Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

In this paper, flysch is presented as a representative material of a wide section of the Carpathian Mountains, with some areas in Poland highlighted. The geological structure of this area is complex due to the alternating layers of blocky rock masses and soil (Vessia et al., 2017). Such a complex pattern is seen in some Alpine flysch slopes, such as the Ingelsberg landslide area (Romeo et al., 2015). Many authors are monitored, predicted landslides (Allasia et al., 2013; Bertacchini et al., 2009; Casagli et al., 2010) by sophisticated sensors. The rock-soil flysch successions have become intensively fissured as a result of their geological history, weathering (precipitation and snowmelt), and long-term water retention, especially on the surface layers. These complex materials are characterised by heterogeneous lithologies, whose mechanical properties are largely uncertain. These geological structures have also been confirmed by monitoring and control studies performed on a large number of landslides (Bednarczyk, 2014). One of the most striking phenomena is the sudden decrease in the strength parameters in the studied rocks in the direction parallel to the layers due to watering. The process is made possible by heterogeneous fractured strong rock layers with high permeability coefficients for water. This study precisely describes the phenomena occurring at the contact area between the component layers of flysch under the wet conditions of a weak plane. An elastic-plastic analysis method that considers the developed strength model at the surfaces of the contact areas (Biernatowski & Pula, 1988; Pula, 1997) has been used to estimate the load capacity for piles working under a horizontal load. The piles are part of a reliability chain (Pula, 1997) in a given construction and are the first element of concern for monitoring (Muszynski & Rybak, 2017). A particular device intended to study the dependence of the shear stress on a fixed failure surface in a controlled consolidation condition was utilized. The study was conducted for a wide range of displacements and for different values of stabilized vertical stresses of consolidation. The complexity of the processes occurring in the shear zone, presented as a detailed study of the material crack mechanics, is highlighted. The laboratory results were used to construct the mechanical model of the slip surface between the soil and rock with the description supported by a neural network (NN) approximation. The artificial NN was created as a multi-layered, easy to use approach for interpreting results and for quick reconstruction of approximated values useful for the calculations presented in laterally loaded piles. For the calculations, long, sheared strips of material were considered in a semi-analytical procedure to solve a differential equation of stability. The calculations are intended to reveal the safety indexes for a wide range of boundary tasks as the most significant indicator for design decisions.
Go to article

Abstract

The Brzanka Mountain Range in the Ciężkowickie Foothills has a dense river network. Unfortunately the contemporary maps contain only the names of some main rivers of the Brzanka Mountain Range. Local communities use the same set of names of rivers as cartographers, while studies in the historical geography of the Brzanka Mountain Range reveal a wealth of local hydronyms that have seemingly been forgotten. The article attempts both to reconstruct a set of hydronyms of the Brzanka Mountain Range and to explain their etymology. It shows that hydronyms change over time and that studies on local hydronyms can help restore the collection of the names of rivers in the Brzanka Mountain Range and provide interesting information related to the past of this region. Moreover, they reveal contemporary unknown facts related to the natural environment and settlement processes in the Middle Ages. A visual summary of the article is a map showing the Brzanka Mountain Range with its river network and associated hydronyms.
Go to article

Abstract

Obłazowa Cave was first excavated in 1985, and is best known for the discoveries of remains of settlement from the time of Middle and Upper Palaeolithic. The traces of most recent settlement in the cave, found in the uppermost part of the stratigraphy can be attributed to Magdalenian settlement. Results of latest excavation brought more precise date this occupation face. In years 2016 and 2017 in layer III of the cave a series of artifacts, and a small sandstone female figurine were found.
Go to article

Abstract

In the Polish sector of the Magura Nappe have long been known and exploited carbonate mineral waters, saturated with carbon dioxide, known as the “shchava (szczawa)”. These waters occur mainly in the Krynica Subunit of the Magura Nappe, between the Dunajec and Poprad rivers, close to the Pieniny Klippen Belt (PKB). The origin of these waters is still not clear, this applies to both “volcanic” and “metamorphic” hypotheses. Bearing in mind the case found in the Szczawa tectonic window and our geological and geochemical studies we suggest that the origin of the carbon dioxide may be linked with the thermal/pressure alteration of organic matter of the Oligocene deposits from the Grybów Unit. These deposits, exposed in several tectonic windows of the Magura Nappe, are characterized by the presence of highly matured organic matter – the origin of the hydrocarbon accumulations. This is supported by the present-day state of organic geochemistry studies of the Carpathian oil and gas bed rocks. In our opinion origin of the carbon-dioxide was related to the southern, deep buried periphery of the Carpathian Oil and Gas Province. The present day distribution of the carbonated mineral water springs has been related to the post-orogenic uplift and erosion of the Outer (flysch) Carpathians.
Go to article

Abstract

The radiolarian biostratigraphy of the Middle–Upper Jurassic pelagic siliceous sediments (Czajakowa Radiolarite Formation) in the Niedzica succession of the Pieniny Klippen Belt (Carpathians) is interpreted in terms of their age in a stratotype section, and facies equivalents in other tectonic-facies units of this region. The siliceous sediments are represented by radiolarian cherts and silicified limestones which are underlain and overlain by red nodular limestones, equivalents of the Rosso Ammonitico facies. The radiolarian association includes thirty-seven taxa belonging to twenty one genera which represent the Northern Tethyan Palaeogeographic Province. Key radiolarians recorded provide a means of correlation with zonation schemes based on Unitary Associations defined for the Jurassic Tethyan sediments. The age of the Czajakowa Radiolarite Formation in the stratotype section is determined as U.A.Z.9 to U.A.Z.11 corresponding to middle Oxfordian up to Kimmeridgian. Comparison of radiolarian biozones from the stratotype section with other facial equivalent sections in the Pieniny Klippen Belt reveals a significant diachronism for both the lower and the upper limits of the Jurassic pelagic siliceous facies.
Go to article

This page uses 'cookies'. Learn more