Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.
Go to article

Abstract

Shoot tips excised from shoot culture of Salvia officinalis were encapsulated in 2% or 3% (w/v) sodium alginate and exposed to 50 mM calcium chloride for complexation. Immediately or after 6, 12 or 24 weeks of storage at 4°C, the synthetic seeds were cultured for 6 weeks on half-strength MS medium supplemented with indole-3-acetic acid (IAA) (0.1 mg/l) and solidified with 0.7% agar. The frequency of shoot and root emergence from encapsulated shoot tips was affected by the concentrations of sodium alginate and additives in the gel matrix (sucrose, gibberellic acid, MS nutrient medium) as well as duration of storage. The frequency of shoot and root induction of non-stored synthetic seeds was highest with shoot tips encapsulated with 2% sodium alginate containing 1.5% sucrose and 0.5 mg/l gibberellic acid (GA3). Shoot tips maintained their viability and ability to develop shoots even after 24 weeks of storage when they were encapsulated in 3% alginate with 1/3 MS medium, sucrose (1.5%) and GA3 (0.25 mg/l). Root formation tended to decrease with storage time. Overall, 90% of the plantlets derived from stored and non-stored synthetic seeds survived in the greenhouse and grew to phenotypically normal plants. This procedure can enable the use of synthetic seed technology for germplasm conservation of S. officinalis, a plant species of high medical and commercial value.
Go to article

This page uses 'cookies'. Learn more