Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

Following upon Merlin Donald’s claim that human specificity emerges in history, and not exclusively in evolutionary time, it will be suggested that the diversified means of producing semiosis created by human beings account for the spread of empathy and altruism not only beyond the kin group, but to humankind in general. This amounts to treating other cultures as different from us, but still able to enter into communication with us (as an Alter), as opposed to treating these cultures as being part of nature, and thus only susceptible to being communicated about (as an Alius). Starting out from the theory of bio-cultural evolution defended by Peter J. Richerson and Robert Boyd, as well as from the multi-level selection theory of Elliott Sober and David Sloan Wilson, we try to lay bare the way in which semiotic structures play a role for transforming cultural evolution, contrary to biological evolution, into human history. We inquiry into what makes the existence of Alter-culture possible, if, as Sober and Wilson have claimed, armed with game theory, an altruistic society (an Ego-culture in our terms), is only possible in opposition to another group in relation to which group egoism rules (that is, in our terms, an Alius-culture). We will follow Michael Tomasello in arguing for the primacy of games of cooperation, rather than competition, while adding an historical dimension, which serves to explain how such cooperation can be extended beyond the primary group (our Ego-culture). However, we will insist on the importance of multiple semiotic resources for the boot-strapping of empathy and altruism, as well as on the genesis of this process in cultural encounters, as reflected in the spirit of the Enlightenment.
Go to article

Abstract

This paper presents a preoperative hip reconstruction method with diagnosed osteoarthritis using Durom Hip Resurfacing System (DHRS). The method is based on selection and application of the resurfacing to the pelvis reconstructed on the basis of computed tomography. Quality and geometrical parameters of distinguished tissues have a fundamental significance for locating and positioning the acetabular and femoral components. The application precedes the measurements of anatomical structures on a complex numerical model. The developed procedure enables functional selection of endo-prosthesis and its positioning in such a way that it secures geometric parameters within the bone bed and the depth , inclination angles and ante-version of the acetabular component, the neck-shaft angle and ante-torsion angle of the neck of the femoral bone, and reconstruction of the biomechanical axis of the limb and the physiological point of rotation in the implanted joint. Proper biomechanics of the bone-joint complex of the lower limb is determined by correlation of anatomical-geometrical parameters of the acetabular component and parameters of the femoral bone.
Go to article

Abstract

The prevalence of heavy metals in wastewater is the cause of death of numerous organisms which take part in biological treatment of wastewater, that is why the aim of the study has been to asses the influence of cadmium and copper ions upon the microfauna of activated sludge. 5, 10, 50, and 100 mg/l of Cd2+ and Cu2+ were added into the samples of activated sludge and then, after 24 hours, the microscopic observations of activated sludge microfauna were carried out, and all changes concerning the amount of microfauna, functional groups, and species composition were determined. The results obtained allowed to find a high level of toxicity of Cd2+ and Cu2+ ions to activated sludge microfauna, which resulted in the changes in the value of the Sludge Biotic Index and classes of sludge, survivability of microfauna, and reduction in the number of taxonomic units. It was observed that Cu2+ ions are more toxic to activated sludge microfauna than Cd2+ ions in identical doses. Organisms sensitive to Cd2+ and Cu2+ ions have been found to be testate amoebae, Aspidisca sp. and Epistylis sp., as well as organisms relatively sensitive to tested metals, which turned out to be ciliates of Opercularia and Vorticella convalaria genera.
Go to article

Abstract

The removal of organic dyes from industrial wastewater remains a problem, both technically and economically. In this study, Yarrowia lipolytica yeast cells were isolated from poultry meat and immobilized using alginate. The immobilized Yarrowia lipolytica yeast was used as biosorbent to remove methylene blue (MB) dye from synthetic effl uent water. The results show that maximum adsorption capacity under optimum conditions was 66.67 mg∙g-1. The equilibrium adsorption data fi tted well onto the Freundlich adsorption isotherms with R2 >0.99. Adsorption kinetics was of pseudo-second order process suggesting that the adsorption was a chemisorption. FTIR spectra identifi ed typical absorption bands of a biosorbent. Sorption of MB dye on Yarrowia lipolytica yeast cells was exothermic with weak sorption interaction.
Go to article

Abstract

Biosensors are a crucial part of most of bioanalytical diagnostic devices and systems. Due to semiconductor technologies, a great progress in diminution of costs and miniaturisation as well as an increased reliability of these devices was achieved. Application of molecular and biological techniques in the detection process has contributed to a real increase in sensitivity, selectivity, the detection limit and the number of analytes to be detected. Different transducers of chemical parameters into electrical output signals are applied in these devices. Electrochemical principles, both potentiometric and amperometric, are opted for due to their simplicity of application and extremely low costs of such biosensors. Ion sensitive field effect transistors (ISFETs) may be easily integrated into the required electronics, resulting in their miniaturisation. Further miniaturisation may be attained by development of miniaturised total analytical systems (uTAS). To ensure competitive parameters of these biosensors, optimal methods of immobilisation of biochemical receptors (ionophores, enzymes, antibodies, etc.) should be developed. A review of the work by the authors related to these problems is presented in the article.
Go to article

Abstract

The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands (as a novel group binders BioCo). The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman) confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of bindermineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology
Go to article

Abstract

On the basis of hydrogen peroxide decomposition process occurring in the bioreactor with fixed-bed of commercial catalase the optimal feed temperature was determined. This feed temperature was obtained by maximizing the time-average substrate conversion under constant feed flow rate and temperature constraints. In calculations, convection-diffusion-reaction immobilized enzyme fixed-bed bioreactor described by a coupled mass and energy balances as well as general kinetic equation for rate of enzyme deactivation was taken into consideration. This model is based on kinetic, hydrodynamic and mass-transfer parameters estimated in earlier work. The simulation showed that in the biotransformation with thermal deactivation of catalase optimal feed temperature is only affected by kinetic parameters for enzyme deactivation and decreases with increasing value of activation energy for deactivation. When catalase undergoes parallel deactivation the optimal feed temperature is strongly dependent on hydrogen peroxide feed concentration, feed flow rate and diffusional resistances expressed by biocatalyst effectiveness factor. It has been shown that the more significant diffusional resistances and the higher hydrogen peroxide conversions, the higher the optimal feed temperature is expected.
Go to article

Abstract

To explore the basic principles of hierarchical materials designed from nanoscale and up, we have been studying the mechanics of robust and releasable adhesion nanostructures of gecko [1]. On the question of robust adhesion, we have introduced a fractal-like hierarchical hair model to show that structural hierarchy allows the work of adhesion to be exponentially enhanced as the level of structural hierarchy is increased. We show that the nanometer length scale plays an essential role in the bottom-up design and, baring fracture of hairs themselves, a hierarchical hair system can be designed from nanoscale and up to achieve flaw tolerant adhesion at any length scales. For releasable adhesion, we show that elastic anisotropy leads to orientation-dependent adhesion strength. Finite element calculations revealed that a strongly anisotropic attachment pad in contact with a rigid substrate exhibits essentially two levels of adhesion strength depending on the direction of pulling.
Go to article

This page uses 'cookies'. Learn more