Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Steel and cast-iron products, due to their low price and beneficial properties, are the most widely used among metals; their consumption has become an indicator of the economic development of countries. The characteristics of iron raw materials, in relation to current metallurgical requirements, are presented in the present this article. The globalization of the trade and development of steelmaking technologies have caused significant changes in the quality of raw materials in the last half-century forcing improvements in processing technologies. In many countries, standard concentrates (at least 60% Fe) are almost twice as rich as those processed in the mid-20th century. Methods of quality assessment have been improved and quality standards tightened. The quality requirements for the most important raw materials ‒ iron ores and concentrates, steel scrap, major alloy metals, coking coal, and coke, as well as gas and other energy media ‒ are reviewed in the present paper. Particular attention is paid to the quality testing methodology. The quality of many raw materials is evaluated multi-parametrically: both chemical and physical characteristics are important. Lower-quality parameters in raw materials equate to significantly lower prices obtained by suppliers in the market. The markets for these raw materials are diversified and governed by separate sets of newly introduced rules. Price benchmarks (e.g. for standard Australian metallurgical coal) or indices (for iron concentrates) apply. Some raw materials are quoted within the framework of the commodity market system (certain alloying components and steel scrap). The abandonment of the long-established system of multi-annual contracts has led to wide fluctuations in prices, which have reached a scale similar to that of other metals.
Go to article

Abstract

The effect of cationic, anionic and nonionic surface active additives, organic compounds and polymers on the electrodeposition of Zn-Mo coatings on steel substrate and detailed characterization in chosen optimal conditions was studied. The influence of polyethylene glycol (PEG) various concentration, sodium dodecyl sulphate (SDS), triton X-100, d-sorbitol, cetyl trimethyl ammonium bromide (CTAB), thiourea and disodium ethylenediaminetetraacetate (EDTA) on the electrodeposition process was examined. The composition of deposits was defined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Results has shown that the current efficiency of the electrodeposition of Zn-Mo coatings is 71.4%, 70.7%, 66.7% for 1.5 g/dm3 PEG 20000, 0.1 g/dm3 Triton X-100 and 0.75 M D-sorbitol respectively. The surface topography and roughness of selected coatings on steel was investigated by atomic force microscopy (AFM). The attendance of D-sorbitol of 0.75 M in the solution cause clear reduction of grain size and the value of roughness parameter (Ra) in relation to SDS, PEG, Triton X-100 and the sample prepared without the additives. The morphology of electrodeposited layers was studied by scanning electron microscopy (SEM). The addition of selected additives to the electrolytic bath results in the formation of smoother, brighter and more compact Zn-Mo coatings in comparison to layers obtained from similar electrolytes but without the addition of surfactants. The optimal concentration of the most effective additives such as PEG 20000, Triton X-100 and D-sorbitol is 1.5 g/dm3, 0.1 g/dm3, 0.75 M respectively.
Go to article

Abstract

High prices of tin and its limited resources, as well as several valuable properties characterising Cu-Sn alloys, cause searching for materials of similar or better properties at lower production costs. The influence of various nickel additions to CuSn10 casting bronze and to CuSn8 bronze of a decreased tin content was tested. Investigations comprised melting processes and casting of tin bronzes containing various nickel additions (up to 5%). The applied variable conditions of solidification and cooling of castings (metal and ceramic moulds) allowed to assess these alloys sensitivity in forming macro and microstructures. In order to determine the direction of changes in the analysed Cu-Sn-Ni alloys, the metallographic and strength tests were performed. In addition, the solidification character was analysed on the basis of the thermal analysis tests. The obtained results indicated the influence of nickel in the solidification and cooling ways of the analysed alloys (significantly increased temperatures of the solidification beginning along with increased nickel fractions in Cu-Sn alloys) as well as in the microstructure pattern (clearly visible grain size changes). The hardness and tensile strength values were also changed. It was found, that decreasing of the tin content in the analysed bronzes to which approximately 3% of nickel was added, was possible, while maintaining the same ultimate tensile strength (UTS) and hardness (HB) and improved plasticity (A5).
Go to article

This page uses 'cookies'. Learn more