Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper presents a numerical model of the novel design of the axial magnetic bearing with six cylindrical poles. The motivation behind this idea was to eliminate vibrations in rotating machinery due to the axial load. Common conception of such a bearing provides a single component of the electromagnetic force, which is not enough to reduce transverse and lateral vibrations of the armature. The proposed design allows for avoiding wobbling of the disc with the use of a few axial force components that are able to actively compensate the axial load and stabilise the disc in a balanced position. Before a real device is manufactured, a virtual prototype should be prepared. The accurate numerical model will provide essential knowledge about the performance of the axial magnetic bearing.
Go to article

Abstract

This paper presents an analysis of the stator teeth geometry impact on the parameters of the 8-pole radial magnetic bearing. In this paper, such parameters as current gain and position stiffness have been analysed. Additionally, we have proposed criteria for evaluating the characteristics of these parameters by calculating the variability of current gain and position stiffness. The research has been performed by solving the magnetic bearing actuator boundary problem using the finite element method. Magnetic force has been calculated using the Maxwell stress tensor method. Other parameters, such as current gain and position stiffness have been calculated as partial derivate of the force with respect to control current and position of the rotor.
Go to article

This page uses 'cookies'. Learn more