Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In this investigation, the effects of genistein (GEN) on the expression of steroidogenic genes such as steroidogenic acute regulatory protein (StAR), side-chain cleavage enzymes (P450scc) and cytochrome P450 aromatase (CYP19) were assessed. For this study, forty young female Sprague Dawley (SD) rats at aged 2-3 months (200±20 g) and forty aged female SD rats aged 10-12 months (490±20 g) were selected. Also, based on weight they were divided into a negative control group (NC), three different GEN dose groups, which received GEN of 15, 30, 60 mg/kg, and a positive control group (PC). The experiment lasted 30 days. Concentrations of serum hormones were determined by Enzyme-linked immunosorbent assay (ELISA). Gene and protein expressions of StAR, P450scc and CYP19 were determined by Real-Time PCR and western blot techniques. It was observed that 30-60 mg/kg GEN could increase the expression of androgen generating key enzymes in the young rat ovary. GEN also significantly increased progesterone and E2 levels in the serum of aged rats and reduced the levels of LH and FSH in the serum of both young and aged rats. Compared with young rats, the effect of GEN on the ovary of aged rats was stronger and a lower dose of GEN (15 mg/kg) showed an obvious effect on these indicators. GEN influenced both estrogen level and indicators associated with estrogen and androgen transformation processes, which indicates that GEN can impair the growth and maturation of the ovary.
Go to article

Abstract

Objective: This study aimed to investigate developmental changes of the thymus and intra- thymic IL-1β, IL-6 and TNF-α expression in weaned Sprague-Dawley rats induced by lipopolysac- charide. Methods: Forty healthy weaned rats aged 26 days and weighing 83±4 g were randomly and equally divided into two groups. The lipopolysaccharide group was treated daily with a single injection of lipopolysaccharide for 10 consecutive days, and the saline group was treated with an equal volume of sterilized saline. On the 1st, 4th, 7th and 10th day, histological changes and distribu- tion of IL-1β-, IL-6- and TNF-α-positive cells were detected in the thymus by hematoxylin-eosin and immunohistochemistry staining, respectively. Subsequently, the expression levels of IL-1β, IL-6 and TNF-α were evaluated in the thymus by the ELISA method. Results: Thymus weight and index were significantly smaller in lipopolysaccharide-treated rats than in saline-treated rats (p<0.05), but no substantial changes were found in the thymus microstructure after lipopolysaccharide induction. Moreover, a large number of IL-1β-, IL-6- and TNF-α-positive cells were observed with brownish-yellow color and mainly distributed in the thy- mus parenchyma, both integrated optical density and average optical density increased signifi- cantly in lipopolysaccharide-treated rats than those in saline-treated rats. Compared with the saline group, most of the thymic homogenates had higher levels of IL-1β, IL-6 and TNF-α in the lipopolysaccharide group on different days. Conclusion: These findings indicate that the thymus atrophied after lipopolysaccharide induction in weaned Sprague-Dawley rats, and excessive production of intrathymic IL-1β, IL-6 and TNF-α was probably involved in the atrophic process.
Go to article

This page uses 'cookies'. Learn more