Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The study of the subdivision driving technology of a stepper motor and two types of typical acceleration and deceleration curves aims at optimizing the open-loop control performance of the stepper motor. The simulation model of a two-phase hybrid stepper motor open-loop control system is set up based on the mathematical model of the stepper motor, in order to let the stepper motor have the smaller stepper angle, two types of typical acceleration and a deceleration curve algorithm are designed for the real- time online calculation based on the subdivision driving technology. It respectively carries out the simulation analysis for their control effects. The simulation results show that the parabolic acceleration and deceleration curves have a larger maximum in-step rotation angle and the faster dynamic response ability in the same control period, and at the same time, the position tracking error of an intermediate process is smaller.
Go to article

Abstract

The pole phase modulation (PPM) technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM) with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM). The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.
Go to article

Abstract

The recently proposed q-rung orthopair fuzzy set (q-ROFS) characterized by a membership degree and a non-membership degree is powerful tool for handling uncertainty and vagueness. This paper proposes the concept of q-rung orthopair linguistic set (q-ROLS) by combining the linguistic term sets with q-ROFSs. Thereafter, we investigate multi-attribute group decision making (MAGDM) with q-rung orthopair linguistic information. To aggregate q-rung orthopair linguistic numbers ( q-ROLNs), we extend the Heronian mean (HM) to q-ROLSs and propose a family of q-rung orthopair linguistic Heronian mean operators, such as the q-rung orthopair linguistic Heronian mean (q-ROLHM) operator, the q-rung orthopair linguistic weighted Heronian mean (q-ROLWHM) operator, the q-rung orthopair linguistic geometric Heronian mean (q-ROLGHM) operator and the q-rung orthopair linguistic weighted geometric Heronian mean (q-ROLWGHM) operator. Some desirable properties and special cases of the proposed operators are discussed. Further, we develop a novel approach to MAGDM within q-rung orthopair linguistic context based on the proposed operators. A numerical instance is provided to demonstrate the effectiveness and superiorities of the proposed method.
Go to article

Abstract

This paper describes the design and test of a new high-current electronic current transformer based on a Rogowski coil. For better performances, electronic current transformers are used to replace conventional electro-magnetic inductive current transformers based on ferromagnetic cores and windings to measure high-current on the high voltage distribution grids. The design of a new high-current electronic current transformer is described in this paper. The principal schemes of the prototype and partial evaluation results are presented. Through relative tests it is known that the prototype has a wide dynamic range and frequency band, and it can allow high accuracy measurements.
Go to article

Abstract

Electronic voltage transformers (EVT) and electronic current transformers (ECT) are important instruments in a digital substation. For simple, rapid and convenient development, the paper proposed an on-site calibration system for electronic instrument transformers based on LabVIEW. In the system, analog signal sampling precision and dynamic range are guaranteed by the Agilent 3458A digital multimeter, and data synchronization is also achieved based on a self-developed PCI synchronization card. To improve the measurement accuracy, an error correction algorithm based on the Hanning window interpolation FFT has good suppression of frequency fluctuation and inter-harmonics interference. The human-computer interface and analysis algorithm are designed based on LabVIEW, and the adaptive communication technology is designed based on IEC61850 9-1/2. The calibration system can take into account pairs of digital output and analog output of the electronic voltage/current transformer calibration. The results of system tests show that the calibration system can meet the requirements of 0.2 class calibration accuracy, and the actual type test and on-site calibration also show that the system is easy to operate with convenience and satisfactory stability.
Go to article

Abstract

The shipping noise near channels and ports is an important contribution to the ambient noise level, and the depth of these sites is often less than 100 m. However less attention has been paid to the measurement in shallow water environments (Brooker, Humphrey, 2016). This paper presents extensive measurements made on the URN (underwater radiated noise) of a small fishing boat in the South China Sea with 87 m depth. The URN data showed that the noise below 30 Hz was dominated by the background noise. The transmission loss (TL) was modelled with FEM (finite element method) and ray tracing according to the realistic environmental parameters in situ. The discrepancy between the modelled results and the results using simple law demonstrates both sea surface and bottom have significant effect on TL for the shallow water, especially at low frequencies. Inspired by the modelling methodology in AQUO (Achieve QUieter Oceans) project (Audoly et al., 2015), a predicted model applied to a typical fishing boat was built, which showed that the URN at frequencies below and above 100 Hz was dominated by non-cavitation propeller noise and mechanical noise, respectively. The agreement between predicted results and measured results also demonstrates that this modelling methodology is effective to some extent.
Go to article

This page uses 'cookies'. Learn more