Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In this paper, we propose and experimentally demonstrate a new method for optical frequency transfer over fibre. Instead of dual acousto-optic modulators (AOMs) as adopted in the traditional fibre phase noise compensation setup, here an active fibre phase noise compensation scheme with a single acousto-optic modulator (AOM) is used. The configuration simplifies the equipment of the user end while maintaining a high-performance optical frequency transfer stability. We demonstrate an actively stabilized coherent transfer at an optical frequency of 193.55THz over 10-km spooled fibre, obtaining a relative frequency stability (Allan deviation) of 3:84 #2; 10��16/1 s and 4:08 #2; 10��18/104 s, which is improved by about 2#24;3 orders of magnitude in comparison with the one without any phase noise compensation that achieves a relative frequency stability of 1:81 #2; 10��14/1 s and 2:48 #2; 10��15/104 s.
Go to article

Abstract

The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.
Go to article

This page uses 'cookies'. Learn more