Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents an approach of numerical modelling of alloy solidification in permanent mold and transient heat transport between the casting and the mold in two-dimensional space. The gap of time-dependent width called "air gap", filled with heat conducting gaseous medium is included in the model. The coefficient of thermal conductivity of the gas filling the space between the casting and the mold is small enough to introduce significant thermal resistance into the heat transport process. The mathematical model of heat transport is based on the partial differential equation of heat conduction written independently for the solidifying region and the mold. Appropriate solidification model based on the latent heat of solidification is also included in the mathematical description. These equations are supplemented by appropriate initial and boundary conditions. The formation process of air gap depends on the thermal deformations of the mold and the casting. The numerical model is based on the finite element method (FEM) with independent spatial discretization of interacting regions. It results in multi-mesh problem because the considered regions are disconnected.
Go to article

Abstract

Presented paper shows the mathematical and numerical approaches for modelling of binary alloy solidification solved by the Finite Element Method (FEM). The phenomenon of shrinkage cavities formation process is included in the numerical model. Multiple macroscopic cavities can be modelled within the single casting volume. Solid, liquid and gaseous phases with different material properties are taken into account during solidification process. Mathematical model uses the differential equation of heat diffusion. Modification of specific heat is used to describe the heat releasing during liquid-solid phase change. Numerical procedure of shrinkage cavities evolution is based on the recognition of non-connected liquid volumes and local shrinkage computation in the each of them. The recognition is done by the selection of sets of interconnected nodes containing liquid phase in the finite element mesh. Original computer program was developed to perform calculation process. Obtained results of temperature and shrinkage cavities distributions are presented and discussed in details.
Go to article

This page uses 'cookies'. Learn more