Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 100
items per page: 25 50 75
Sort by:

Abstract

In this work problems associated with requirements related to pollution emissions in compliance with more restrictive standards, low-emission combustion technology, technical realization of the monitoring system as well as algorithms allowing combustion process diagnostics are discussed. Results of semi-industrial laboratory facility and industrial (power station) research are presented as well as the possibility of application of information obtained from the optical fibre monitoring system for combustion process control. Moreover, directions of further research aimed to limit combustion process environmental negative effects are presented.
Go to article

Abstract

O tym, czym jest modelowanie i na czym polega modelowanie pracy mózgu, rozmawiamy z prof. Danielem Wójcikiem z Instytutu Biologii Doświadczalnej im. Marcelego Nenckiego PAN.
Go to article

Abstract

In this paper, a new simple method for determination of flow parameters, axial dispersion coefficients DL and Péclet numbers Pe was presented. This method is based on an accurate measurement model considering pulse tracer response. Our method makes it possible to test the character of gas flow motion and precisely measure flow parameters for different pressures and temperatures. The idea of combining the transfer function, numerical inversion of the Laplace transform and optimisation method gives many benefits like a simple and effective way of finding solution of inverse problem and model coefficients. The calculated values of flow parameters (DL and/or Pe) suggest that in the considered case the gas flow is neither plug flow nor perfect mixing under operation condition. The obtained outcomes agree with the gas flow theory. Calculations were performed using the CAS program type, Maple®.
Go to article

Abstract

Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH) of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.
Go to article

This page uses 'cookies'. Learn more