Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Successful implementation of an active vibration control system is strictly correlated to the exact knowledge of the dynamic behavior of the system, of the excitation level and spectra and of the sensor and actuator’s specification. Only the correct management of these aspects may guarantee the correct choice of the control strategy and the relative performance. Within this paper, some preliminary activities aimed at the creation of a structurally simple, cheap and easily replaceable active control systems for metal panels are discussed. The final future aim is to control and to reduce noise, produced by vibrations of metal panels of the body of a car. The paper is focused on two points. The first one is the realization of an electronic circuit for Synchronized Shunted Switch Architecture (SSSA) with the right dimensioning of the components to control the proposed test article, represented by a rectangular aluminum plate. The second one is a preliminary experimental study on the test article, in controlled laboratory conditions, to compare performances of two possible control approach: SSSA and a feed-forward control approach. This comparison would contribute to the future choice of the most suitable control architecture for the specific attenuation of structure-born noise related to an automotive floor structure under deterministic (engine and road-tyre interaction) and stochastic (road-tyre interaction and aerodynamic) forcing actions.
Go to article

Abstract

The present work focuses on a first study for a piezoelectric harvesting system, finalized to the obtaining of electrical energy from the kinetic energy of rainy precipitation, a renewable energy source not really considered until now. The system, after the realization, can be collocated on the roof of an house, configuring a “Piezo Roof Harvesting System”. After presenting a state of art of the harvesting systems from environmental energy, linked to vibrations, using piezoelectric structures, and of piezoelectric harvesting systems functioning with rain, the authors propose an analysis of the fundamental features of rainy precipitations for the definition of the harvesting system. Then, four key patterns for the realization of a piezoelectric energy harvesting system are discussed and analysed, arriving to the choice of a cantilever beam scheme, in which the piezoelectric material works in 31 mode. An electro-mechanical model for the simulation of performance of the unit for the energetic conversion, composed of three blocks, is proposed. The model is used for a simulation campaign to perform the final choice of the more suitable piezoelectric unit, available on the market, which will be adopted for the realization of the “Piezo Roof Harvesting System”.
Go to article

This page uses 'cookies'. Learn more