Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

In the paper, the extended finite element method (XFEM) is combined with a recovery procedure in the analysis of the discontinuous Poisson problem. The model considers the weak as well as the strong discontinuity. Computationally efficient low-order finite elements provided good convergence are used. The combination of the XFEM with a recovery procedure allows for optimal convergence rates in the gradient i.e. as the same order as the primary solution. The discontinuity is modelled independently of the finite element mesh using a step-enrichment and level set approach. The results show improved gradient prediction locally for the interface element and globally for the entire domain.
Go to article

Abstract

Discontinuous coefficients in the Poisson equation lead to the weak discontinuity in the solution, e.g. the gradient in the field quantity exhibits a rapid change across an interface. In the real world, discontinuities are frequently found (cracks, material interfaces, voids, phase-change phenomena) and their mathematical model can be represented by Poisson type equation. In this study, the extended finite element method (XFEM) is used to solve the formulated discontinuous problem. The XFEM solution introduce the discontinuity through nodal enrichment function, and controls it by additional degrees of freedom. This allows one to make the finite element mesh independent of discontinuity location. The quality of the solution depends mainly on the assumed enrichment basis functions. In the paper, a new set of enrichments are proposed in the solution of the Poisson equation with discontinuous coefficients. The global and local error estimates are used in order to assess the quality of the solution. The stability of the solution is investigated using the condition number of the stiffness matrix. The solutions obtained with standard and new enrichment functions are compared and discussed.
Go to article

Abstract

The essential parameters for structure integrity assessment in Linear Elastic Fracture Mechanics (LEFM) are Stress Intensity Factors (SIFs). The estimation of SIFs can be done by analytical or numerical techniques. The analytical estimation of SIFs is limited to simple structures with non-complicated boundaries, loads and supports. An effective numerical technique for analyzing problems with singular fields, such as fracture mechanics problems, is the extended finite element method (XFEM). In the paper, XFEM is applied to compute an actual stress field in a two-dimensional cracked body. The XFEM is based on the idea of enriching the approximation in the vicinity of the discontinuity. As a result, the numerical model consists of three types of elements: non-enriched elements, fully enriched elements (the domain of whom is cut by a discontinuity), and partially enriched elements (the so-called blending elements). In a blending element, some but not all of the nodes are enriched, which adds to the approximation parasitic term. The error caused by the parasitic terms is partly responsible for the degradation of the convergence rate. It also limits the accuracy of the method. Eliminating blending elements from approximation space and replacing them with standard elements, together with applying shifted-basis enrichment, makes it possible to avoid the problem. The numerical examples show improvements in results when compared with the standard XFEM approach.
Go to article

This page uses 'cookies'. Learn more