Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

One of the basic parameters which describes road traffic is Annual Average Daily Traffic (AADT). Its accurate determination is possible only on the basis of data from the continuous measurement of traffic. However, such data for most road sections is unavailable, so AADT must be determined on the basis of short periods of random measurements. This article presents different methods of estimating AADT on the basis of daily traffic (VOL), and includes the traditional Factor Approach, developed Regression Models and Artificial Neural Network models. As explanatory variables, quantitative variables (VOL and the share of heavy vehicles) as well as qualitative variables (day of the week, month, level of AADT, the cross-section, road class, nature of the area, spatial linking, region of Poland and the nature of traffic patterns) were used. Based on comparisons of the presented methods, the Factor Approach was identified as the most useful.
Go to article

Abstract

Missing traffic data is an important issue for road administration. Although numerous ways can be found to impute them in foreign literature (inter alia, the most effective method, that is Box-Jenkins models), in Poland, still only proven and simplified methods are applied. The article presents the analyses including an assessment of the completeness of the existing traffic data and works related to the construction of SARIMA model. The study was conducted on the basis of hourly traffic volumes, derived from the continuous traffic counts stations located in the national road network in Poland (Golden River stations) from the years 2005 – 2010. As a result, the proposed model was used to impute the missing data in the form of SARIMA (1.1,1)(0,1,1)₁₆₈. The newly developed model can be used effectively to fill in the missing required days of measurement for estimating AADT by AASHTO method. In other cases, due to its accuracy and laboriousness of the process, it is not recommended.
Go to article

This page uses 'cookies'. Learn more