Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Wdrażanie rozwiązań w zakresie skojarzonej produkcji ciepła i energii elektrycznej w systemach mikroskalowych stanowi jeden ze sposobów na zwiększenie bezpieczeństwa dostaw energii do odbiorców końcowych. Na rynku dominują rozwiązania średniej i dużej skali zasilane paliwami kopalnymi, dlatego też istotne jest opracowanie systemów dedykowanych do zastosowania w budynkach mieszkalnych, gospodarstwach rolnych, szkołach itp. Niniejsza praca przedstawia koncepcję rozwinięcia funkcjonalności typowego kominka opalanego drewnem o wytwarzanie energii elektrycznej. Energia elektryczna wytwarzana w generatorach termoelektrycznych (badane były zarówno jednostki dostępne na rynku, jak i jednostka własnej konstrukcji) może zapewnić pokrycie potrzeb własnych systemu mikrokogeneracyjnego (zasilanie sterownika, siłownika przepustnicy powietrznej, wentylatora, pompy itp.). Z kolei naddatek energii może zostać zmagazynowany w akumulatorach, a następnie wykorzystany do zasilania innych urządzeń (oświetlenie, drobne urządzenia RTV i AGD itp.). Należy przy tym zwrócić uwagę, że dostępne na rynku generatory termoelektryczne nie są zwykle zaprojektowane do współpracy z domowymi urządzeniami grzewczymi – występuje problem m.in. z zapewnieniem wystarczająco dużego strumienia ciepła przekazywanego do strony gorącej generatora, jak również z jego efektywnym chłodzeniem. Dla zapewnienia wysokiej efektywności systemu mikrokogeneracyjnego konieczne jest więc opracowanie dedykowanej konstrukcji zarówno generatora, jak i źródła ciepła.
Przejdź do artykułu

Abstrakt

Straw-fired batch boilers, due to their relatively simple structure and low operating costs, are an excellent source of heat for a wide range of applications. A concept prototype of a cogeneration system with a straw-fired batch boiler was developed. The basic assumptions were based on the principles of the Rankine Cycle and the Organic Rankine Cycle systems with certain design modifications. Using the prototype design of a system that collects high-temperature heat from the boiler, studies were performed. The studies involved an analysis of the flue gas temperature distribution in the area of the oil exchanger, a comparison of the instantaneous power of the boiler’s water and oil circuits for different modes of operation, as well as an analysis of the flue gas. In the proposed system configuration where the electricity production supplements heat generation, the power in the oil circuit may be maintained at a constant level of approx. 20-30 kW. This is possible provided that an automatic fuel supply system is applied. Assuming that the efficiency of the electricity generation system is not less than 10%, it will be possible to generate 2-3 kW of electricity. This value will be sufficient, for an on-site operation of the boiler.
Przejdź do artykułu

Abstrakt

Wzrost zużycia energii w sektorze budownictwa wpływa na poszukiwanie rozwiązań dążących do poprawy efektywności energetycznej w tym zakresie lub uzyskania samowystarczalności energetycznej. Dotowanymi rozwiązaniami są podejścia bazujące na odnawialnych źródłach energii. W celu produkowania energii elektrycznej, na potrzeby własne budynku, wykorzystywane są przede wszystkim panele fotowoltaiczne oraz turbiny wiatrowe. Niniejszy artykuł skupia się na analizie pracy turbiny wiatrowej o poziomej osi obrotu zintegrowanej z budynkiem. Przedmiotowa instalacja zlokalizowana jest na fasadzie budynku Centrum Energetyki AGH oraz skierowana w kierunku północno-zachodnim. W związku z tym turbina pracuje najbardziej efektywnie, gdy wiatr wieje z tego kierunku. Prędkość startowa instalacji wynosi 2,3 m/s, natomiast moc zainstalowana 1,5 kW. Analizowana instalacja posiada możliwość zmiany zarówno kąta łopat, jak i położenia gondoli turbiny względem kierunku wiatru, co poprawia jej wydajność. W artykule omówiono parametry pracy turbiny w zależności od panujących warunków pogodowych. Dla porównania przyjęto okres, w którym nie występowały anomalie pogodowe oraz okres, w którym miał miejsce orkan Grzegorz. Dla tych dwóch przedziałów czasowych (od północy 27.10.2017 do południa 28.10.2017 oraz od północy 29.10.2017 do południa 30.10.2017) zmierzona i porównana została prędkość wiatru, prędkość obrotowa turbiny, moc generowana przez turbinę, a także takie parametry jak: wytwarzany hałas i drgania. Otrzymane wyniki pokazują znaczący wpływ orkanu Grzegorz na parametry pracy instalacji – w tym znaczący wzrost prędkości obrotowej wirnika, a co za tym idzie – siedmiokrotny wzrost średniej mocy generowanej przez turbinę. Z drugiej strony zaobserwowany został również wzrost poziomu hałasu oraz drgań.
Przejdź do artykułu

Abstrakt

Zmiany, które dokonują się na krajowym rynku paliw stałych, w szczególności prognozy dotyczące wzrostu cen, a także rosnące wymagania związane z przestrzeganiem obowiązujących norm ochrony środowiska, powodują wzrost zainteresowania odnawialnymi źródłami energii, zwłaszcza biomasą, wiatrem i promieniowaniem słonecznym. Źródła te umożliwiają osiągnięcie redukcji emisji CO2, a tym samym uniknięcie kosztów środowiskowych po 2020 roku. Dlatego też istotne znaczenie w tym zakresie będzie miał rozwój energetyki rozproszonej, która wyposażona w kotły biomasowe, kotły gazowe i wysokosprawne CHP, umożliwi spełnienie obowiązujących norm w zakresie efektywności energetycznej oraz emisji zanieczyszczeń do powietrza. Trzeba podkreślić, że podejmowane działania związane z ograniczeniem emisji (ustawa antysmogowa) będą przyczyniać się do zmniejszenia zużycia węgla w sektorze drobnych odbiorców (gospodarstwa domowe, rolnictwo oraz pozostali odbiorcy) na korzyść biomasy bądź innych źródeł odnawialnych. W artykule dokonano przeglądu wybranych technologii biomasowych: - kotły opalane biomasą rozdrobnioną (fluidalne, pyłowe oraz rusztowe), - kotły do spalania słomy, - układy kogeneracyjne zasilane biomasą, - toryfikacja i karbonizacja biomasy. W wymienionych technologiach biomasowych pokłada się nadzieję na ich dynamiczny rozwój i praktyczne zastosowanie w najbliższych latach, a tym samym na poprawę trudnej sytuacji w sektorze energetyki rozproszonej w zakresie mocy do 50 MW.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji