Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, the material used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics. With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.
Go to article

Abstract

This elaboration presents the method of virtual positioning of the construction of an endoprosthesis of hip joint in a patient’s pelvis and femoral bone, reconstructed on the basis of imaging obtained from computer tomography. It is based on the matching of an implant to individual anatomical-biomechanical conditions. The method is established on the following procedures: diagnostic, spatial modeling, virtual measuring and targeted biometrological application for the model of bone structures. The final effect of the completed procedures is selection and optimal positioning of the endoprosthesis of hip joint before a planned medical intervention. The determined geometrical parameters of bone structures and settled positioning of the endoprosthesis can create data for the system of computer navigation.
Go to article

This page uses 'cookies'. Learn more