Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Many Antarctic marine benthic invertebrates are adapted to specific environ− mental conditions (e.g. low stable temperatures, high salinity and oxygen content). Changes caused by global climatic shifts can be expected to have significant impact on their physiol− ogy and distribution. Odontaster validus, an ubiquitous, omnivorous sea star is one of the “keystone species” in the Antarctic benthic communities. Laboratory experiments were car− ried out to study the effect of temperature rise (from 0 to 5#2;C) on some vital biological func− tions that sea stars must perform in order to survive in their environment. Parameters such as behavioural reaction of sea stars to food and food odour, locomotory performance and abil− ity to right were measured. Temperature increase significantly impaired the ability of O. validus to perform these functions (e.g. lowering the number of sea stars able to right, in− creasing time−to−right, reducing locomotory activity, weakening chemosensory reaction to food and food odour). At temperatures of 4 and 5#2;C a loss of motor coordination was ob− served, although at all tested temperatures up to 5#2;C there were single individuals perform− ing successfully.
Go to article

Abstract

During laboratory and field experiments on Nacella concinna on the west coast of Admiralty Bay, King George Island (Antarctica) clear morphological and behavioural differences between two limpet forms (N. concinna polaris and N. concinna concinna) were found. They suggested presence of genetic divergence. AFLP (amplified fragment length polymorphism) profiling of N. concinna individuals representing the two forms revealed nearly 32% of polymorphic bands; only 2% of them differed between the forms. Our results suggest that the observed phenotypic variation seems to be a result of adaptation to environ− mental conditions and not of any genetic divergence.
Go to article

This page uses 'cookies'. Learn more