Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Thermodynamic principles for the dissolution of gases in ionic liquids (ILs) and the COSMO-SAC model are presented. Extensive experimental data of Henry’s law constants for CO2, N2 and O2 in ionic liquids at temperatures of 280-363 K are compared with numerical predictions to evaluate the accuracy of the COSMO-SAC model. It is found that Henry’s law constants for CO2 are predicted with an average relative deviation of 13%. Both numerical predictions and experimental data reveal that the solubility of carbon dioxide in ILs increases with an increase in the molar mass of ionic liquids, and is visibly more affected by the anion than by the cation. The calculations also show that the highest solubilities are obtained for [Tf2N]ˉ. Thus, the model can be regarded as a useful tool for the screening of ILs that offer the most favourable CO2 solubilities. The predictions of the COSMOSAC model for N2 and O2 in ILs differ from the pertinent experimental data. In its present form the COSMO-SAC model is not suitable for the estimation of N2 and O2 solubilities in ionic liquids.
Go to article

This page uses 'cookies'. Learn more