Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 72
items per page: 25 50 75
Sort by:

Abstract

The purpose of this paper is to present and analyse the decision-making problem faced by a future house owner - selection of the optimal solution of building thermal insulation in relation to the selected criteria, both related to costs and future benefits. The problem of selecting the best solutions in the construction sector is widely discussed in the science literature. In this paper, the authors decided to solve the raised problem by using the Entropy method.
Go to article

Abstract

The aim of the study was to assess the physiological stiffness of the normal canine jejunal mucosa based on shear wave elastography. The study was carried out on 60 dogs. In all the animals studied, the abdominal ultrasound was carried out using the SuperSonic Imagine Aixplorer system. The site of the jejunal elastography was determined using standard ultrasonography and all the measurements were carried out thrice. The stiffness of the area examined was determined during each measurement. Mean values were calculated based on the results obtained. The normal stiffness of the jejunal mucosa ranged from 1.305 kPa to 9.319 kPa (mean 5.31 ± 2.04 kPa). Based on our findings, we determined the range of normal values of the jejunal mucosal stiffness in healthy dogs. In addition, shear wave elastography was found to be safe and easy to perform. Moreover, it did not require anaesthesia or patient immobilisation for long periods.
Go to article

Abstract

The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.
Go to article

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.
Go to article

Abstract

Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C) and ausferritizing time (5 - 180 min.) at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C) and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min.) of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.
Go to article

Abstract

The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.
Go to article

Abstract

Animals as a source of organs and tissues for xenotransplantation could become a backup solution for the growing shortage of human donors. The presence of human xenoreactive anti- bodies directed against Galα1,3Gal antigens on the cell surface of a pig donor triggers the activa- tion of the complement leading to a hyperacute reaction. The development of genetic engineer- ing techniques has enabled the modification of genomes by knocking in and/or knocking out genes. In this paper, we report the generation of modified pigs with ZFN mediated disruption of the GGTA1 gene encoding the enzyme responsible for synthesis of Galα1,3Gal antigens. ZFN plasmids designed to target the exon 9 region of the pig GGTA1 gene encoding the catalytic domain were injected into the pronuclei of fertilized egg cells. Among 107 piglets of the F0 gene- ration analyzed, one female with 9-nt deletion in exon 9 of the GGTA1 gene was found. 13 of 33 piglets of the F1 generation represented the +/- GGTA1 genotype and 2 of 13 F2 piglets repre- sented the -/- GGTA1 genotype. No changes in the animals’ behavior, phenotype or karyotype were observed. Analysis confirmed heredity of the trait in all animals. A complex functional analysis of the modified animals, including flow cytometry, human serum cytotoxicity test and immunohistochemical detection, was performed to estimate the phenotype effect of genetic modification and this indicated an efficient GGTA1 knock-out in modified pigs.
Go to article

Abstract

Oilseed rape (Brassica napus L. ssp. oleifera Metzg) was the subject of the study in two forms: winter cv. 'Muller' (at the rosette stage - the first internode BBCH 30-31) and spring cv. `Feliks' (at the yellow bud stage BBCH 59). The main gas-exchange parameters, net photosynthetic rate (P-N) transpiration rate (E), stomatal conductance (g(s)), and intercellular CO2 concentration (Ci) were measured on leaves prior to the piercing and immediately after the short-term piercing. The effect of mechanical wounding revealed different progress of the gas exchange process for the two forms. Piecewise linear regression with the breakpoint estimation showed that the plants at the same age but at a different vegetal stage, manage mechanical leaf-piercing differently. The differences concerned the stomatal conductance and transpiration changes since for rosette leaves the process consisted of five intervals with a uniform direction, while for stem leaves-of five intervals with a fluctuating direction. These parameters got stabilized within a similar time (220 mins) for both forms. The process of net photosynthetic rate was altered by the plant stages. 'Muller' plants at the rosette stage demonstrated dependence of P-N on time in log-linear progression: y (P-N) = 8.01+ 2.73 log(10) (x t(2)); 7 < t(2) < 220; R-2 = 0.96. For stem leaves of Teliks' plants the process of transpiration, in terms of directions, was convergent with the process of photosynthesis. Those two processes were synchronized from 1st to 114th min of the test (r = 0.85; p < 0.001) in plants at the rosette stage and from 26th to 148th min in stem leaves (r = 0.95; p < 0.001).
Go to article

Abstract

The results of studies on the use of magnesium alloy in modern Tundish for production of vermicular graphite cast irons were described. This paper describes the results of using a low-magnesium ferrosilicon alloy for the production of vermicular graphite cast irons. The paper presents a vermicular (and nodular) graphite in different walled castings. The results of trials have shown that the magnesium Tundish process can produce high quality vermicular graphite irons under the specific industrial conditions of Foundries - Odlewnie Polskie S.A. in Starachowice. In this work describes too preliminary studies on the oxygen state in cast iron and their effect on graphite crystallization.
Go to article

This page uses 'cookies'. Learn more