Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Go to article

Abstract

The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design. The SERPENT2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF 3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Go to article

Abstract

The paper presents results of research focused on modelling heat storage tank operation used for forecasting purposes. It presents selected issues related to mathematical modelling of heat storage tanks and related equipment and discusses solution process of the optimisation task. Presented detailed results were obtained during real-life industrial implementation of the optimisation process at the Siekierki combined heat and power (CHP) plant in Warsaw owned by Vattenfall Heat Poland S.A. (currently by Polish Oil & Gas Company - PGNiG SA) carried out by the Academic Research Centre of Power Industry and Environment Protection, Warsaw University of Technology in collaboration with Transition Technologies S.A. company.
Go to article

This page uses 'cookies'. Learn more