Search results

Filters

  • Journals
  • Date

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

The article proposes the implementation of a novel method of plastic forming of internal toothing in flange spline sleeves. A method being the subject of Polish patent application P.416772 has been used for this purpose, which involves a combination of the scheme of the direct extrusion of a cone hollow with the die press forming of the wall to obtain a flange. The entire process takes place in a single technological sequence. The operations come one after another, so that there is no need for reheating the stock or carrying out intermediate soft annealing. The proposed method is assumed to be an alternative to the operation of press forming of internal spline sleeve toothing in a conical die [1] and to the operation of swaging on rotary swaging machines [2]. It is assumed that this method, too, is alternative to other technologies known from the literature and industrial practice, whose specifications and literature references will be indicated later on in this paper. Computer simulations of the flanged sleeve plastic forming process were performed using the commercial numerical program Forge®3D. During the numerical computations, the distributions of temperature fields were determined on the cross-section of the plastically formed product. The computations enabled also the visualization of the plastic flow of metal, especially in the toothing forming regions, and the determination of the energy and force parameters of the process.
Go to article

Abstract

Many wire products (e.g. nets) are made from galvanized material. The hot dip galvanizing process gives the possibility of applying in a respectively thick coat of zinc (also depending on the time of staying wires in the bath) which provides the protection of the product against corrosion. In the available literature there were no research concerned with the influence of hot dip galvanizing process on the mechanical properties TRIP structure steel wires. Therefore, an experiment was carried out in laboratory conditions allowing the determination of the influence of hot dip galvanizing process parameters on the mechanical properties (tensile strength UST and yield strength YS) of TRIP steel wires as well as on the amount of retained austenite in their structure. It has been stated that the hot galvanizing process of TRIP steel wires influences, proportionally to the time of staying wires in zinc bath, on their plastic properties (the increase in yield strength YS) as well as the decrease in the amount of retained austenite in their structure. Such a phenomenon can be caused by stresses responsible for rapid heating of the wire put in the zinc bath in temperature of 450°C and by the strengthening of the materials resulting from the transformation of retained austenite.
Go to article

Abstract

The article reports the results of a comparative analysis made for three novel unconventional gear wheel forging processes based on the authors’ patented [5,6,21] plastic forming methods developed chiefly for the purposes of extruding hollow products as well as valves and pins. These processes are distinguished by the fact that part of the tooling elements which are normally fixed during conventional forging are purposefully set in motion. This is intended to change the conditions of friction at the metal-tool contact surface and to induce additional thermal effects due to the transformation of the plastic deformation energy into thermal energy and, as a consequence, to improve the plastic flow of metal and to reduce the force parameters of the process.
Go to article

This page uses 'cookies'. Learn more