Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the recent years, chaotic systems with uncountable equilibrium points such as chaotic systems with line equilibrium and curve equilibrium have been studied well in the literature. This reports a new 3-D chaotic system with an axe-shaped curve of equilibrium points. Dynamics of the chaotic system with the axe-shaped equilibrium has been studied by using phase plots, bifurcation diagram, Lyapunov exponents and Lyapunov dimension. Furthermore, an electronic circuit implementation of the new chaotic system with axe-shaped equilibrium has been designed to check its feasibility. As a control application, we report results for the synchronization of the new system possessing an axe-shaped curve of equilibrium points.
Go to article

Abstract

Abstract This research work proposes a new three-dimensional chaotic system with a hidden attractor. The proposed chaotic system consists of only two quadratic nonlinearities and the system possesses no critical points. The phase portraits and basic qualitative properties of the new chaotic system such as Lyapunov exponents and Lyapunov dimension have been described in detail. Finally, we give some engineering applications of the new chaotic system like circuit simulation and control of wireless mobile robot.
Go to article

This page uses 'cookies'. Learn more