Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

Submitted work deals with the analysis of reoxidation processes for aluminium alloys. Due to the aluminium high affinity to the oxygen, the oxidation and consequently reoxidation will occur. Paper focuses on the gating system design in order to suppress and minimize reoxidation processes. Design of the gating system is considered as one of the most important aspect, which can reduce the presence of reoxidation products - bifilms. The main reason for the reoxidation occurrence is turbulence during filling of the mold. By correctly designing the individual parts of gating system, it is possible to minimize turbulence and to ensure a smooth process of the mold filling. The aim of the work is an innovative approach in the construction of gating system by using unconventional elements, such as a naturally pressurized system or vortex elements. The aim is also to clarify the phenomenon during the gating system filling by visualization with the aid of ProCAST numerical simulation software. ProCAST can calculate different indicators which allow to better quantify the filling pattern.
Go to article

Abstract

Liquid AI -Si alloys are usually given special treatments before they are cast to obtain finer or modified matrix and eutectic structures, leading to improved proper ties. For many years, sodium additions to hypoeutectic and eutectic AI -Si melts have been recognized as the most effective method of modifying the eutectic morphology, although most of the group IA or IIA elements have significant effects on the eutectic s tructure. Unfortunately, many of these approaches also have associated several founding difficulties, such as fading, forming dross in presence of certain alloying elements, reduced fluidity, etc. ln recent years, antimony additions to AI -Si castings have attracted considerable attention as an alternative method of refining the eutectic structure. Such additions eliminate many of the difficulties listed above and provide permanent (i.e. non -fading) refining ability. In this paper, the authors summarize work on antimony treatment of Al -Si based alloys.
Go to article

Abstract

This article deal with non-conventional methods to affect the crystallization of Al-alloys by the application of electromagnetic field. The application of electromagnetic field is not technically complicated, it does not require mechanical contact with the melt, and the scale of the crystallization influence is not dependent on the thickness of the casting. Two experimental materials were used: AlSi10MgMn and AlSi8Cu2Mn and two values of electromagnetic induction: B = 0.1 T a B = 0.2 T. The best results for alloy AlSi10MgMn were achieved by application of electromagnetic field with induction B = 0.2 T; during this experiment the best mechanical properties were achieved - the biggest increase of mechanical properties was recorded. The best results for alloy AlSi8Cu2Mn were achieved by combination of electromagnetic field with induction B = 0.1 T and modification by 0.05 wt. % Sr. In this case we don´t recommend to use electromagnetic field with induction B = 0.2 T; because of deposition of coarse grains and decreasing of mechanical properties.
Go to article

Abstract

Porosity is one of the major defects in aluminum castings and results in a decrease of the mechanical properties of Al-Si alloys. It is induced by two mechanisms: solidification shrinkage and gas segregation. One of the methods for complex evaluation of macro and micro porosity in Al-Si alloys is using the Tatur test technique. This article deals with the evaluation of porosity with the help of Tatur tests for selected Al-Si alloys. These results will be compared with results obtained from the ProCAST simulation software.
Go to article

Abstract

Pouring of liquid aluminium is typically accompanied by disturbance of the free surface. During these disturbances, the free surface oxide films can be entrained in the bulk of liquid, also pockets of air can be accidentally trapped in this oxide films. The resultant scattering of porosity in castings seems nearly always to originate from the pockets of entrained air in oxide films. Latest version of ProCast software allows to identify the amount of oxides formed at the free surface and where they are most likely to end-up in casts. During a filling calculation, ProCast can calculate different indicators which allow to better quantify the filling pattern. The fluid front tracking indicator “ Free surface time exposure” has the units [cm2*s]. At each point of the free surface, the free surface area is multiplied by the time. This value is cumulated with the value of the previous timestep. In addition, this value is transported with the free surface and with the fluid flow.Experiments to validate this new functions were executed.
Go to article

Abstract

Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.
Go to article

Abstract

The paper deals with the impact of technological parameters on the heat transfer coefficient and microstructure in AlSi12 alloy using squeeze casting technology. The casting with crystallization under pressure was used, specifically direct squeeze casting method. The goal was to affect crystallization by pressure with a value 100 and 150 MPa. The pressure applied to the melt causes a significant increase of the coefficient of heat transfer between the melt and the mold. There is an increase in heat flow by approximately 50% and the heat transfer coefficient of up to 100-fold, depending on the casting conditions. The change in cooling rate influences the morphology of the silicon particles and intermetallic phases. A change of excluded needles to a rod-shaped geometry with significantly shorter length occurs when used gravity casting method. By using the pressure of 150 MPa during the crystallization process, in the structure can be observed an irregular silica particles, but the size does not exceed 25 microns.
Go to article

Abstract

This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by nickel. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich intermetallic phases. It is impossible to remove iron from melt by standard operations. Some elements eliminates iron by changing iron intermetallic phase morphology, decreasing its extent and by improving alloy properties. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of nickel as iron corrector of iron based phases.
Go to article

Abstract

The paper deals with squeeze casting technology. For this research a direct squeeze casting method has been chosen. The influence of process parameters variation (casting temperature, mold temperature, pressure) on mechanical properties and structure will be observed. The thicknesses of the individual walls were selected based on the use of preferred numbers and series of preferred numbers (STN ISO 17) with the sequence of 3.15, 4.00, 5.00, 6.00 and 8.00 mm. The width of each wall was 22 mm with a length of 100 mm. As an experimental material was chosen the AlSi12 and AlSi7Mg0.3 alloys. The mechanical properties (UTS, E) for individual casting parameters and their individual areas of different thicknesses were evaluated. In the structure the influence of pressure on the change of the eutectic morphology, the change of the volume of eutectic and the primary alpha phase, the effect of the pressure on the more fine-grain and the regularization of the structure were evaluated.
Go to article

Abstract

The melt cleaning is an important aspect in the production of high-quality aluminum castings. Specifically inclusions within the melt and an excessively high hydrogen content lead to defects and undesired porosity in the castings. Although it is possible to reduce the amount of hydrogen and oxidic inclusions by purge gas treatment and the use of melting salts, it is impossible to remove oxides (bifilms) created during filling of gating system. Paper deals with the effects of melt quality and the placement of a filter in the filling system on Al-7%Si-Mg alloy mechanical properties. Three different filters were used: (a) rectangular ceramic pressed filter with 3 mm thickness (b) cubical pressed ceramic filter with thickness 10 mm (c) cubical pressed ceramic filter with thickness 22 mm. The results showed that the highest tensile strength values were obtained from the filter with thickness of 22 mm. Numerical simulation analysis of the filling process showed that velocity reduction by filter is the major phenomenon affecting the mechanical properties. Another evaluated aspect during experiments was capability of filters to retain old bifilms. For this purpose multiply remelted alloy was prepared and analyzed. Results showed that filter efficiency increases with decreasing melt quality as a result of possibility to retain “old” bifilms better than small and thin “new” bifilms.
Go to article

Abstract

Main aim of submitted work is evaluation and experimental verification of inoculation effect on Al alloys hot-tear sensitivity. Submitted work consists of two parts. The first part introduces the reader to the hot tearing in general and provides theoretical analysis of hot tearing phenomenon. The second part describes strontium effect on hot tearing susceptibility, and gives the results on hot tearing for various aluminium alloys. During the test, the effect of alloy chemical composition on hot tearing susceptibility was also analyzed. Two different Al-based alloys were examined. Conclusions deals with effect of strontium on hot tearing susceptibility and confirms that main objective was achieved.
Go to article

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

This page uses 'cookies'. Learn more