Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Time-Frequency (t-f) distributions are frequently employed for analysis of new-born EEG signals because of their non-stationary characteristics. Most of the existing time-frequency distributions fail to concentrate energy for a multicomponent signal having multiple directions of energy distribution in the t-f domain. In order to analyse such signals, we propose an Adaptive Directional Time-Frequency Distribution (ADTFD). The ADTFD outperforms other adaptive kernel and fixed kernel TFDs in terms of its ability to achieve high resolution for EEG seizure signals. It is also shown that the ADTFD can be used to define new time-frequency features that can lead to better classification of EEG signals, e.g. the use of the ADTFD leads to 97.5% total accuracy, which is by 2% more than the results achieved by the other methods.
Go to article

Abstract

Gabor Wigner Transform (GWT) is a composition of two time-frequency planes (Gabor Transform (GT) and Wigner Distribution (WD)), and hence GWT takes the advantages of both transforms (high resolution of WD and cross-terms free GT). In multi-component signal analysis where GWT fails to extract auto-components, the marriage of signal processing and image processing techniques proved their potential to extract autocomponents. The proposed algorithm maintained the resolution of auto-components. This work also shows that the Fractional Fourier Transform (FRFT) domain is a powerful tool for signal analysis. Performance analysis of modified fractional GWT reveals that it provides a solution of cross-terms of WD and blurring of GT.
Go to article

This page uses 'cookies'. Learn more