Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Residual stress has a great influence on the metal, but it is difficult to measure at small area using a general method. Residual stress calculations using the Vickers indentation can solve this problem. In this paper, a numerical simulation has been made for the residual stress measurement method of metal material deformed by high-speed impact. Then, the stress-strain curve at the high-speed deformation was confirmed through actual experiments, and the residual stresses generated thereafter were calculated by the Vickers indenter method. A Vickers indentation analysis under the same conditions was performed at the position where a residual stress of about 169.39 MPa was generated. Experiments were carried out and high speed impact was applied to the specimen to generate residual stress. The obtained results indicate that it is possible to identify residual stresses in various metals with various shapes through Vickers indentation measurements, and to use them for process and quality control.
Go to article

Abstract

Poppet valves made from high-frequency heat-treated SUH3 steel have insufficient durability, and scratches appear on the valve face in prolonged use. It is necessary to develop surface treatment technology with excellent durability to prevent the deterioration of engine performance. Therefore, a surface treatment technology with higher abrasion resistance than existing processes was developed by direct metal deposition to the face where the cylinder and valve are closed. In this study, heat pretreatment and deposition tests were performed on three materials to find suitable powders. In the performance evaluation, the hardness, friction coefficient, and wear rate were measured. Direct metal deposition using Inconel 738 and Stellite 6 powders without heat pretreatment were experimentally verified to have excellent durability.
Go to article

Abstract

In this study, cross-section analysis was performed on a novel rotating direct-metal deposition method capable of preliminary surface treatment and damage repair of cylindrical inner walls. The cross-sectional shape, microstructure, and metallurgical composition were analyzed to verify feasibility. No defects such as porosity or cracks were found in the cross section, but asymmetric dilution was observed because of the non-coaxial powder nozzle. Microstructural coarsening was confirmed over a higher dilution area by high-magnification optical microscope images. As the dilution ratio was increased, hard carbides in the dendrite were bulk-diffused into inter-dendrite spaces, and the toughness was lowered by Fe penetration into the deposit. Therefore, the increased laser heat input can be modulated to the typical dilution by decreasing the laser scanning velocity.
Go to article

Abstract

Neodymium-Iron-Boron (Nd-Fe-B) magnets are considered to have the highest energy density, and their applications include electric motors, generators, hard disc drives, and MRI. It is well known that a fiber structure with a high aspect ratio and the large specific surface area has the potential to overcome the limitations, such as inhomogeneous structures and the difficulty in alignment of easy axis, associated with such magnets obtained by conventional methods. In this work, a suitable heat-treatment procedure based on single-step and multistep treatments to synthesize sound electrospun Nd-Fe-B-O nanofibers of Φ572 nm was investigated. The single-step heat-treated (directly heat-treated at 800°C for 2 h in air) samples disintegrated along with the residual organic compounds, whereas the multistep heat-treated (sequential three-step heat-treated including three steps;: dehydration (250°C for 30 min in an inert atmosphere), debinding (650°C for 30 min in air), and calcination (800°C for 1 h in air)) fibers maintained sound fibrous morphology without any organic impurities. They could maintain such fibrous morphologies during the dehydration and debinding steps because of the relatively low internal pressures of water vapor and polymer, respectively. In addition, the NdFeO3 alloying phase was dominant in the multistep heat-treated fibers due to the removal of barriers to mass transfer in the interparticles.
Go to article

This page uses 'cookies'. Learn more