Search results


  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:


The Silurian fishes from north-western Hunan, China are characterised by the earliest known galeaspids Dayongaspis Pan and Zeng, 1985 and Konoceraspis Pan, 1992, and the earliest known antiarch Shimenolepis Wang J.-Q., 1991, as well as rich sinacanth fin spines. Shimenolepis from Lixian County in north-western Hunan, which was dated as the Telychian (late Llandovery), has long been regarded as the oldest representative of the placoderms in the world. As such, in addition to eastern Yunnan and the Lower Yangtze Region, north-western Hunan represents another important area in South China that yields important fossil material for the research of early vertebrates and related stratigraphy. Here we summarise the Silurian fishes known in north-western Hunan so far, and classify them into three vertebrate assemblages (i.e., the Wentang, Maoshan, and Yangtze assemblages). Based on the updated Silurian vertebrate and stratigraphic databases, the Silurian fish-bearing strata in north-western Hunan can be subdivided into the Rongxi, Huixingshao, and Xiaoxi formations in ascending chronological order, which can be correlated with the Lower Red Beds, the Upper Red Beds, and the Ludlow Red Beds in South China, respectively. A new look at the Silurian strata in Lixian suggests that the age of Shimenolepis is late Ludlow rather than late Llandovery as previously suggested. The research on Silurian fishes and biostratigraphy in north-western Hunan not only provides morphological data of early vertebrates, but also offers new palaeoichthyological evidence for the subdivision, correlation, and age assignment of the Silurian marine red beds in South China. The establishment of a related high-precision Silurian stratigraphic framework in north-western Hunan will help to elucidate the temporal and spatial distribution of Silurian fossil fishes, deepen the understanding of the evolution of early vertebrates, and unravel the coevolution between Silurian vertebrates and the palaeoenvironment.
Go to article

This page uses 'cookies'. Learn more