Search results

Filters

  • Journals
  • Date

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.
Go to article

Abstract

A new NiTi-based multi-component Ni35Ti35Ta10Co10Cu10 (at.%) alloy was obtained by vacuum arc melting. The microstructure of the alloy has been studied using scanning and transmission electron microscopy, backscatter electron diffraction and X-ray diffraction techniques. The performed measurements showed presence of two cubic and one tetragonal phases. Energy dispersive X-ray spectroscopy analysis confirmed that all the observed phases contained all five principal elements.
Go to article

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.
Go to article

Abstract

This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) µm and roughness 0.40(7) µm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration.
Go to article

Abstract

An equiatomic multi-component alloy Ni20Ti20Ta20Co20Cu20 (at. %) was obtained using vacuum arc melting. In order to characterize such an alloy, microstructure analysis has been performed using Scanning and Transmission Electron Microscopy, Electron Backscattered Diffraction, X-ray Diffraction and Energy Dispersive X-ray Spectroscopy techniques. Microstructure analysis revealed the presence of one rhombohedral and two cubic phases. Energy Dispersive X-ray Spectroscopy measurements revealed that both observed phases include five chemical elements in the structure. Using Rietveld refinement approach the lattice parameters were refined for the observed phases.
Go to article

This page uses 'cookies'. Learn more