Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s–1, 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
Go to article

Abstract

Based on the mould temperature measured by thermocouples during slab continuous casting, a difference of temperature thermograph is developed to detect slab cracks. In order to detect abnormal temperature region caused by longitudinal crack, the suspicious regions are extracted and divided by virtue of computer image processing algorithms, such as threshold segmentation, connected region judgement and boundary tracing. The abnormal regions are then determined and labeled with the eight connected component labeling algorithm. The boundary of abnormal region is also extracted to depict characteristics of longitudinal crack. Based on above researches, longitudinal crack with abnormal temperature region can be detected and is different from other abnormalities. Four samples of temperature drop are picked up to compare with longitudinal crack on the abnormal region formation, length, width, shape, et al. The results show that the abnormal region caused by longitudinal crack has a linear and vertical shape. The height of abnormal region is more than the width obviously. The ratio of height to width is usually larger than that of other temperature drop regions. This method provides a visual and easy way to detect longitudinal crack and other abnormities. Meanwhile it has a positive meaning to the intelligent and visual mould monitoring system of continuous casting.
Go to article

This page uses 'cookies'. Learn more