Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Steel is a versatile material that has found widespread use because of its mechanical properties, its relatively low cost, and the ease with which it can be used in manufacturing process such as forming, welding and machining. Regarding to mechanical properties are strongly affected by grain size and chemical composition variations. Many industrial developments have been carried out both from the point of view of composition variation and grain size in order to exploit the effect of these variables to improve the mechanical proprieties of steels. It is also evident that grain growth are relevant to the mechanical properties of steels, thus suggesting the necessity of mathematical models able to predict the microstructural evolution after thermo cycles. It is therefore of primary importance to study microstructural changes, such as grain size variations of steels during isothermal treatments through the application of a mathematical model, able in general to describe the grain growth in metals. This paper deals with the grain growth modelling of steels based on the statistical theory of grain growth originally developed by L├╝cke [1] and here integrated to take into account the Zener drag effect and is therefore focused on the process description for the determination of the kinetics of grain growth curves temperature dependence.
Go to article

This page uses 'cookies'. Learn more