Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.
Go to article

Abstract

This paper presents the results of computer simulations carried out to determine coordination numbers for a system of parallel cylindrical fibres distributed at random in a circular matrix according to twodimensional pattern created by random sequential addition scheme. Two different methods to calculate coordination number were utilized and compared. The first method was based on integration of pair distribution function. The second method was the modified sequential analysis. The calculations following from ensemble average approach revealed that these two methods give very close results for the same neighbourhood area irrespective of the wide range of radii used for calculation.
Go to article

Abstract

The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.
Go to article

Abstract

The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design. The SERPENT2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF 3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Go to article

This page uses 'cookies'. Learn more