Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Micro-channel heat sinks are used in a wide variety of applications, including microelectronic devices, computers and high-energy-laser mirrors. Due to the high power density that is encountered in these devices (the density of delivered electrical power up to a few kW/cm2) they require efficient cooling as their temperatures must generally not exceed 100 ◦C. In the paper a new design for micro-channel heat sink (MCHS) to be used for cooling laser diode arrays (LDA) is considered. It is made from copper and consisting of 37 micro-channels with length of 9.78 mm, width of 190 μm and depth of 180 μm with the deionized water as a cooling medium. Mathematical and numerical models of the proposed design of the heat sink were developed. A series of thermofluid numerical simulations were performed for various volumetric flow rates of the cooling medium, its inlet temperature and different thermal power released in the laser diode. The results show that the LDA temperature could be decreased from 14 to 17% in comparison with earlier proposed design of the heat sink with the further drop in temperature obtained by applying indium instead of gallium arsenide as the soldering material between the LDA and MCHS interface. Moreover, it was found that the maximum temperature, and therefore the thermal resistance of the considered heat sink, could be decreased by increasing the coolant flow rate.
Go to article

Abstract

Development of new or upgrading of existing airplanes requires many different analyses, e.g., thermal, aerodynamical, structural, and safety. Similar studies were performed during re-design of two small aircrafts, which were equipped with new turboprop engines. In this paper thermo-fluid analyses of interactions of new propulsion systems with selected elements of airplane skin were carried out. Commercial software based numerical models were developed. Analyses of heat and fluid flow in the engine bay and nacelle of a single-engine airplane with a power unit in the front part of the fuselage were performed in the first stage. Subsequently, numerical simulations of thermal interactions between the hot exhaust gases, which leave the exhaust system close to the front landing gear, and the bottom part of the fuselage were investigated. Similar studies were carried out for the twin-engine airplane with power units mounted on the wings. In this case thermal interactions between the hot exhaust gases, which were flowing out below the wings, and the wing covers and flaps were studied. Simulations were carried out for different airplane configurations and operating conditions. The aim of these studies was to check if for the assumed airplane skin materials and the initially proposed airplane geometries, the cover destruction due to high temperature is likely. The results of the simulations were used to recommend some modifications of constructions of the considered airplanes.
Go to article

This page uses 'cookies'. Learn more