Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

The image analysis consists in extracting from the information which is available to the observer of the part that is important from the perspective of the investigated process. This process usually accompanies a considerable reduction in the amount of information from the image. In the field of two-phase flows, computer image analysis can be used to determine flow and geometric parameters of flow patterns. This article presents the possibilities of using this method to determine the void fraction, vapor quality, bubble velocity and the geometric dimensions of flow patterns. The use of computer image analysis methods is illustrated by the example of HFE 7100 refrigerant methoxynonafluorobutane condensation in a glass tubular minichannel. The high speed video camera was used for the study, and the films and individual frames received during the study were analyzed.
Go to article

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

In this paper, effects of non-Fourier thermal wave interactions in a thin film have been investigated. The non-Fourier, hyperbolic heat conduction equation is solved, using finite difference method with an implicit scheme. Calculations have been carried out for three geometrical configurations with various film thicknesses. The boundary condition of a symmetrical temperature step-change on both sides has been used. Time history for the temperature distribution for each investigated case is presented. Processes of thermal wave propagation, temperature peak build-up and reverse wave front creation have been described. It has been shown that (i) significant temperature overshoot can appear in the film subjected to symmetric thermal load (which can be potentially dangerous for reallife application), and (ii) effect of temperature amplification decreases with increased film thickness.
Go to article

Abstract

This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.
Go to article

Abstract

Work on increasing the efficiency of heat exchangers used in car air conditioning systems may lead to a partial change in the construction of refrigeration systems. One of such changes is the use of smaller gas coolers, which directly translates into a reduction in the production costs of the entire system. The article presents the use of computational fluid dynamics methods to simulate the impact of changing the shape of an internal heat exchanger on the cooling efficiency with R744 as the refrigerant. Internal heat exchangers with different geometry of the outer channels were subjected to numerical analysis. The obtained results of calculations show temperature changes in inner and outer channels on the length of the heat exchanger.
Go to article

Abstract

The instability characteristics of a dielectric fluid layer heated from below under the influence of a uniform vertical alternating current (AC) electric field is analyzed for different types of electric potential (constant electric potential/ electric current), velocity (rigid/free) and temperature boundary conditions (constant temperature/heat flux or a mixed condition at the upper boundary). The resulting eigenvalue problem is solved numerically using the shooting method for various boundary conditions and the solution is also found in a simple closed form when the perturbation heat flux is zero at the boundaries. The possibility of a more precise control of electrothermal convection (ETC) through various boundary conditions is emphasized. The effect of increasing AC electric Rayleigh number is to hasten while that of Biot number is to delay the onset of ETC. The system is more stable for rigid-rigid boundaries when compared to rigid-free and least stable for free-free boundaries. The change of electric potential boundary condition at the upper boundary from constant electric potential to constant electric current is found to instill more stability on the system. Besides, increase in the AC electric Rayleigh number and the Biot number is to reduce the size of convection cells.
Go to article

Abstract

The objective of this work is to present an energy analysis of different absorption refrigerating systems operating with diverse refrigerants. Also is applied the method of experimental design to optimize configurations proposed by the absorption pairs used and the operating conditions. Both acceptable coefficient of performance and low operating generator temperature are scrutinised. Therefore, a computer program is developed. An investigation of the thermodynamic properties is presented. Results show the coefficient of performance evolution versus respectively the evaporator temperature, temperature of condensation and generator temperature. A particular interest is devoted to the intermediate pressure effect on the performance of different systems. In order to better converge in the selection of the configuration and the refrigerant, which can ensure a high coefficient of performance associated to relatively low operating generator temperature the plan of experiments has been developed, taking in account all parameters influencing the system performance and the function of operating temperature. Results show that the refrigerating machine containing a compressor between the evaporator and the absorber has a coefficient of performance quite acceptable and that it can work at low generator temperature for about 60 ◦C and using the NH3/LiNO3 as refrigerant.
Go to article

Abstract

The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.
Go to article

Abstract

Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.
Go to article

Abstract

In this article, a comparison of economic effectiveness of various heating systems dedicated to residential applications is presented: a natural gas-fueled micro-cogeneration (micro-combined heat and power – μCHP) unit based on a free-piston Stirling engine that generates additional electric energy; and three so-called classical heating systems based on: gas boiler, coal boiler, and a heat pump. Calculation includes covering the demand for electricity, which is purchased from the grid or produced in residential system. The presented analyses are partially based on an experimental investigation. The measurements of the heat pump system as well as those of the energy (electricity and heat) demand profiles in the analyzed building were conducted for a single-family house. The measurements of the μCHP unit were made using a laboratory stand prepared for simulating a variable heat demand. The overall efficiency of the μCHP was in the range of 88.6– 92.4%. The amounts of the produced/consumed energy (electricity, heat, and chemical energy of fuel) were determined. The consumption and the generation of electricity were settled on a daily basis. Operational costs of the heat pump system or coal boiler based heating system are lower comparing to the micro-cogeneration, however no support system for natural gas-based μCHP system is included.
Go to article

Abstract

The main points of the UPoN-2018 talk and some valuable comments from the Audience are briefly summarized. The talk surveyed the major issues with the notion of zero-point thermal noise in resistors and its visibility; moreover it gave some new arguments. The new arguments support the old view of Kleen that the known measurement data “showing” zero-point Johnson noise are instrumental artifacts caused by the energy-time uncertainty principle. We pointed out that, during the spectral analysis of blackbody radiation, another uncertainty principle is relevant, that is, the location-momentum uncertainty principle that causes only the widening of spectral lines instead of the zero-point noise artifact. This is the reason why the Planck formula is correctly confirmed by the blackbody radiation experiments. Finally a conjecture about the zero-point noise spectrum of wide-band amplifiers is shown, but that is yet to be tested experimentally.
Go to article

Abstract

The paper presents a proposal of using additional statistical parameters such as: standard deviation, variance, maximum and minimum increases of the observed value that were determined during measurements of temperature fields created on the surface of the tested electrochemical capacitor. The measurements were carried out using thermographic methods in order to support assessment of the condition of electrochemical capacitor under classic durability tests based on methods of determination of capacity and equivalent series resistance. The possibility of using some statistical parameters in assessment of the electrochemical capacitor quality was illustrated. The applied measurement methodology and the results of research associated with the classic methods of supercapacitors’ assessment are presented. The obtained results indicate that the variability of some statistical parameters of temperature fields can be directly related to changing the values of standard parameters describing electrochemical capacitor, which are capacitance and equivalent series resistance.
Go to article

Abstract

Low-frequency noise measurements have long been recognized as a valuable tool in the examination of quality and reliability of metallic interconnections in the microelectronic industry. While characterized by very high sensitivity, low-frequency noise measurements can be extremely time-consuming, especially when tests have to be carried out over an extended temperature range and with high temperature resolution as it is required by some advanced characterization approaches recently proposed in the literature. In order to address this issue we designed a dedicated system for the characterization of the low-frequency noise produced by a metallic line vs temperature. The system combines high flexibility and automation with excellent background noise levels. Test temperatures range from ambient temperature up to 300◦C. Measurements can be completely automated with temperature changing in pre-programmed steps. A ramp temperature mode is also possible that can be used, with proper caution, to virtually obtain a continuous plot of noise parameters vs temperature.
Go to article

Abstract

In this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones – the healthy blood cells (erythrocytes) and the pathologic ones (echinocytes). The separated blood cells are analysed in terms of their most important features by the eigenfaces method. The features are the basis for designing the neural network classifier, learned to distinguish between erythrocytes and echinocytes. As the result, the proposed system is able to analyse the smear blood images in a fully automatic way and to deliver information on the number and statistics of the red blood cells, both healthy and pathologic. The system was examined in two case studies, involving the canine and human blood, and then consulted with the experienced medicine specialists. The accuracy of classification of red blood cells into erythrocytes and echinocytes reaches 96%.
Go to article

Abstract

The Kirchhoff-law-Johnson-noise (KLJN) secure key exchange scheme offers unconditional security, however it can approach the perfect security limit only in the case when the practical system’s parameters approach the ideal behavior of its core circuitry. In the case of non-ideal features, non-zero information leak is present. The study of such leaks is important for a proper design of practical KLJN systems and their privacy amplifications in order to eliminate these problems.
Go to article

Abstract

Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with a single neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.
Go to article

Abstract

Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves se- quential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state-of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.
Go to article

Abstract

The paper presents a method of obtaining short-termpositioning accuracy based on micro electro-mechanical system (MEMS) sensors and analysis of the results. A high-accuracy and fast-positioning algorithm must be included due to the high risk of accidents in cities in the future, especially when autonomous objects are taken into account. High-level positioning systems should consider a number of sub-systems such as global positioning system (GPS), CCTV – video analysis, a system based on analysis of signal strength of access points (AP), etc. Short-term positioning means that there are other locating systems with a sufficiently high degree of accuracy based on, e.g. a video camera, but the located object can disappear when it is hidden by other objects, e.g. people, things, shelves etc. In such a case, MEMS sensors can be employed as a positioning system. The paper examines typical movement profiles of a radio-controlled (RC) model and fundamental filtering methods in respect of position accuracy. The authors evaluate the complexity and delay of the filter and the accuracy of the positioning in respect of the current speed and phase of movement (positive acceleration, constant) of the object. It is necessary to know whether and how the length of the filter changes the position accuracy. It has been shown that the use of fundamental filters, which provide solutions in a short time, enables to locate objects with a small error in a limited time.
Go to article

Abstract

According to metrological guidelines and specific legal requirements, every smart electronic electricity meter has to be constantly verified after pre-defined regular time intervals. The problem is that in most cases these pre-defined time intervals are based on some previous experience or empirical knowledge and rarely on scientifically sound data. Since the verification itself is a costly procedure it would be advantageous to put more effort into defining the required verification periods. Therefore, a fixed verification interval, recommended by various internal documents, standardised evaluation procedures and national legislation, could be technically and scientifically more justified and consequently more appropriate and trustworthy for the end user. This paper describes an experiment to determine the effect of alternating temperature and humidity and constant high current on a smart electronic electricity meter’s measurement accuracy. Based on an analysis of these effects it is proposed that the current fixed verification interval could be revised, taking into account also different climatic influence. The findings of this work could influence a new standardized procedure in respect of a meter’s verification interval.
Go to article

Abstract

In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.
Go to article

Abstract

Many researchers have contributed to creating Quantum Key Distribution (QKD) since the first protocol BB84 was proposed in 1984. One of the crucial problems in QKD is to guarantee its security with finite-key lengths by Privacy Amplification (PA). However, finite-key analyses show a trade-off between the security of BB84 and the secure key rates. This study analyses two examples to show concrete trade-offs. Furthermore, even though the QKD keys have been perceived to be arbitrarily secure, this study shows a fundamental limitation in the security of the keys by connecting Leftover Hash Lemma and Guessing Secrecy on the QKD keys.
Go to article

Abstract

In this paper we describe our own construction of a tuneable light source based on a set of light emitting diodes covering the visible spectrum using a homogenizing rod instead commonly used low energy-efficient integrating spheres. The expected prime application of the source is a medical endoscopic system, however it is possible to use it also for other purposes requiring both multispectral operation and a tuneable white light source. We describe the construction of the source and include precise characterization of the output white light – distribution of CCT, Duv, Δu′ v ′ and colour rendering indexes (Ra, R9, Rf , Rg) of light in several planes located at various distances. The obtained results prove that our source is characterized by very good colour rendition according to the Ra and Rf method for various correlated colour temperatures (2700–6500) K. As an example of application images of the Macbeth colour chart registered with an RGB camera included in the laboratory measurement stand are presented. The obtained results prove that, after whole system calibration, this source can be used in many applications, where evaluation of objects requires precise analysis of their colour and multispectral procedures.
Go to article

Abstract

In this paper, we propose and experimentally demonstrate a new method for optical frequency transfer over fibre. Instead of dual acousto-optic modulators (AOMs) as adopted in the traditional fibre phase noise compensation setup, here an active fibre phase noise compensation scheme with a single acousto-optic modulator (AOM) is used. The configuration simplifies the equipment of the user end while maintaining a high-performance optical frequency transfer stability. We demonstrate an actively stabilized coherent transfer at an optical frequency of 193.55THz over 10-km spooled fibre, obtaining a relative frequency stability (Allan deviation) of 3:84 #2; 10��16/1 s and 4:08 #2; 10��18/104 s, which is improved by about 2#24;3 orders of magnitude in comparison with the one without any phase noise compensation that achieves a relative frequency stability of 1:81 #2; 10��14/1 s and 2:48 #2; 10��15/104 s.
Go to article

This page uses 'cookies'. Learn more