Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.
Go to article

Abstract

Heavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents an overview of the physiological mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals.
Go to article

This page uses 'cookies'. Learn more