Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Removal of mercury(II) (Hg(II)) from aqueous media by a new biosorbent was carried out. Natural Polyporus squamosus fungus, which according to the literature has not been used for the purpose of Hg(II) biosorption before, was utilized as a low-cost biosorbent, and the biosorption conditions were analyzed by response surface methodology (RSM). Medium parameters which were expected to affect the biosorption of Hg(II) were determined to be initial pH, initial Hg(II) concentration (Co), temperature (T (°C)), and contact time (min). All experiments were carried out in a batch system using 250 mL fl asks containing 100 mL solution with a magnetic stirrer. The Hg(II) concentrations remaining in fi ltration solutions after biosorption were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Based on the RSM results, the optimal conditions were found to be 5.30, 47.39 mg/L, 20°C and 254.9 min for pH, Co, T (°C), and contact time, respectively. Under these optimal conditions, the maximum biosorbed amount and the biosorption yield were calculated to be 3.54 mg/g and 35.37%, respectively. This result was confi rmed by experiments. This result shows that Polyporus squamosus has a specifi c affi nity for Hg ions. Under optimal conditions, by increasing the amount of Polyporus squamosus used, it can be concluded that all Hg ions will be removed
Go to article

Abstract

The objective of this study was to investigate the possibility of using natural and bacteria-modified Erzurum clayey soil with Methylobacterium extorquens as an alternative to high cost commercial adsorbent materials for the removal of copper from aqueous solution. The copper concentrations in the samples of the polluted river water and CuCl2 solutions treated by the natural and bacteria-modified Erzurum clayey soil (ECS) have been determined by spectrophotometric method. Firstly, the surface of ECS was modified with M. extorquens and surface functionality was increased. Then, the adsorption of Cu (II) from solution phases was studied with respect to varying metal concentration, pH, and temperature and agitation time. The maximum adsorption of Cu (II) for natural and bacteria-modified Erzurum clayey soil was observed at pH: 5.0. At different copper concentrations, copper adsorption analysis was performed on 1 g using clay soil or modified clay soil. Maximum adsorption of Cu (II) was obtained as 45.7 and 48.1 mg g-1 at initial concentration (50 mg/50 mL) and optimal conditions by natural and bacteria-modified clay soil, respectively. The copper concentration was decreased in the substantial amount of the leachates solutions of natural and bacteria-modified clay soil. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of Cu (II) ions. The results showed that modified clay soil had a high level of adsorption capacity for copper ion. The various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were analyzed to observe the nature of adsorption. The structural properties of the natural and bacteria-modified-ECS have been characterized by SEM, FTIR and XRD techniques. Consequently, it was concluded that the bacteria-modified clay soil could be successfully used for the removal of the copper ions from the aqueous solutions.
Go to article

This page uses 'cookies'. Learn more