Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The cumulative results of investigations of the possibility of using the reclaimed materials after the mechanical, thermal or mechanical-thermal reclamation for making cores by means of the blowing method in the alkaline CO2 technology, are presented in the paper. Three kinds of spent sands: with furfuryl resin, bentonite and alkaline phenolic resin, obtained from the foundry, were subjected to three kinds of reclamation: mechanical, thermal and combined mechanical-thermal, applying for this aim adequate experimental devices. The obtained reclaims were assessed with regard to the degree of the matrix liberation from the determined binding material. Reclaims of moulding sands with binders of the form of resin were assessed with regard to ignition loss values and pH reaction, while reclaims of moulding sands with bentonite with regard to the residual clay content and pH value. In all cases the results of the performed sieve analyses were estimated and the average characteristic diameter dl was determined. The reclaimed matrix was applied as a full substitute of the fresh high-silica sand in typical procedures of preparing core sands used for making shaped samples for bending strength investigations, Rg u .
Go to article

Abstract

In this article, there were presented results of research on influence of reclamation process on the ecological quality of reclaim sand with furan resin used in nonferrous foundry. The quality of reclaimed sand is mainly define by two group of chemical substances from elution of reclaimed sand: Dissolves Organic Carbon (DOC) and Total Dissolves Solids (TDS). Reclaimed sand used in test was prepared in experimental thermal reclaimer and mechanical vibration reclaimer REGMAS installed in Faculty of Foundry Engineering at University of Science and Technology in Krakow. The reference point is molding sand shaking out and crumble in jaw crusher. Test of elution was made in acreditation laboratory in Center For Research and Environmental Control in Katowice up to the standard with Dissolves Organic Carbon (DOC) - PN-EN 1484:1999; Total Dissolves Solids (TDS) - PN-EN 15216:2010. The standard for elution test is PN-EN 12457- 4:2006. Except that we were made loss of ignition test, to check how many resin was rest on sand grains.
Go to article

Abstract

Core sands for blowing processes, belong to these sands in which small amount of the applied binding material has the ability of covering the sand matrix surface in a way which - at relatively small coating thickness - allows to achieve the high strength. Although the deciding factor constitute, in this aspect, strength properties of a binder, its viscosity and ability to moisten the matrix surface, the essential meaning for the strength properties of the prepared moulding sand and the mould has the packing method of differing in sizes sand grains with the coating of the binding material deposited on their surfaces. The knowledge of the influence of the compaction degree of grains forming the core on the total contact surface area can be the essential information concerning the core strength. Forecasting the strength properties of core sands, at known properties of the applied chemically hardened binder and the quartz matrix, requires certain modifications of the existing theoretical models. They should be made more realistic with regard to assumptions concerning grain sizes composition of quartz sands and the packing structure deciding on the active surface area of the contacts between grains of various sizes and - in consequence - on the final strength of cores.
Go to article

Abstract

The paper presents the results of thermoanalytical studies by TG/DTG/DTA, FTIR and GC/MS for the oil sand used in art and precision foundry. On the basis of course of DTG and DTA curves the characteristic temperature points for thermal effects accompanying the thermal decomposition reactions were determined. This results were linked with structural changes occurred in sample. It has been shown that the highest weight loss of the sample at temperatures of about 320°C is associated with destruction of C-H bonds (FTIR). In addition, a large volume of gases and high amounts of compounds from the BTEX group are generated when liquid metal interacts with oil sand. The results show, that compared to other molding sands used in foundry, this material is characterized by the highest gaseous emissions and the highest harmfulness, because benzene emissions per kilogram of oil sand are more than 7 times higher than molding sand with furan and phenolic binders and green sand with bentonite and lustrous carbon carrier.
Go to article

Abstract

The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).
Go to article

This page uses 'cookies'. Learn more