Search results

Filters

  • Journals

Search results

Number of results: 641
items per page: 25 50 75
Sort by:

Abstract

An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.
Go to article

Abstract

A mathematical model of a plane, steady state biofilm, with the use of a single substrate kinetics, was proposed. A set of differential equations was solved. In order to analyse the biofilm’s behaviour, a number of simulations were performed. The simulations included varying process parameters such as detachment coefficient and substrate loading. Two detachment models were taken into consideration: one describing the detachment ratio as proportional to the thickness of the biofilm, and the other one proportional to the thickness of the biofilm squared. The results provided information about substrate and live cell distribution in biofilm and the influence of certain parameters on biofilm behaviour.
Go to article

Abstract

This paper presents a comparison of the blending efficiency of eight high-speed rotary impellers in a fully baffled cylindrical vessel under the turbulent flow regime of agitated charge. Results of carried out experiments (blending time and impeller power input) confirm that the down pumping axial flow impellers exhibit better blending efficiency than the high-speed rotary impellers with prevailing radial discharge flow. It follows from presented results that, especially for large scale industrial realisations, the axial flow impellers with profiled blades bring maximum energy savings in comparison with the standard impellers with inclined flat blades (pitched blade impellers).
Go to article

Abstract

A mathematical model for a two-phase fluidised bed bioreactor with liquid recirculation and an external aerator was proposed. A stationary nonlinear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.
Go to article

Abstract

Biochemical Oxygen Demand (BOD) is an important factor used to measure water pollution. This article reviews recent developments of microbial biosensors with respect to their applications for low BOD estimation. Four main methods to measure BOD using a biosensor are described: microbial fuel cells, optical methods, oxygen electrode based methods and mediator-based methods. Each of them is based on different principles, thus a different approach is required to improve the limit of detection. A proper choice of microorganisms used in the biosensor construction and/or sample pre-treatment processes is also essential to improve the BOD lower detection limit.
Go to article

Abstract

There are certain well-known methods of diminishing concentrations of nitrogen compounds, but they are ineffective in case of nitrogen-rich wastewater with a low content of biodegradable carbon. Partial nitritation followed by anaerobic ammonium oxidation (Anammox) process appear to be an excellent alternative for traditional nitrification and denitrification. This paper presents the feasibility of successful start-up of Anammox process in a laboratory-scale membrane bioreactor (MBR). It was shown that the combination of membrane technology and Anammox process allowed to create a new highly efficient and compact system for nitrogen removal. It was possible to achieve average nitrogen removal efficiency equal to 76.7 ± 8.3%. It was shown that the start-up period of 6 months was needed to obtain high nitrogen removal efficiency. The applied biochemical model of the Anammox process was based on the state-of-the-art Activated Sludge Model No.1 (ASM 1) which was modified for accounting activity of autotrophs (nitrite-oxidising bacteria and nitrateoxidising bacteria) and anammox bacteria. In order to increase the predictive power of the simulation selected parameters of the model were adjusted during model calibration. Readjustment of the model parameters based on the critically evaluated data of the reactor resulted in a satisfactory match between the model predictions and the actual observations.
Go to article

Abstract

A kinetic model to describe lovastatin biosynthesis by Aspergillus terreus ATCC 20542 in a batch culture with the simultaneous use of lactose and glycerol as carbon sources was developed. In order to do this the kinetics of the process was first studied. Then, the model consisting of five ordinary differential equations to balance lactose, glycerol, organic nitrogen, lovastatin and biomass was proposed. A set of batch experiments with a varying lactose to glycerol ratio was used to finally establish the form of this model and find its parameters. The parameters were either directly determined from the experimental data (maximum biomass specific growth rate, yield coefficients) or identified with the use of the optimisation software. In the next step the model was verified with the use of the independent sets of data obtained from the bioreactor cultivations. In the end the parameters of the model were thoroughly discussed with regard to their biological sense. The fit of the model to the experimental data proved to be satisfactory and gave a new insight to develop various strategies of cultivation of A. terreus with the use of two substrates.
Go to article

Abstract

This article presents a critical mini-review of research conducted on bioelectrochemical reactors with emphasis placed on microbial fuel cells (MFC) and microbial electrolysis cells (MEC). The principle of operation and typical constructions of MFCs and MECs were presented. The types of anodes and cathodes, ion-selective membranes and microorganisms used were discussed along with their limitations.
Go to article

Abstract

Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilised covalently on the mesostructured siliceous foam (MCF) and three hexagonally ordered mesoporous silicas (SBA-15) with different pore sizes. The enzyme was attached covalently via glutaraldehyde (GLA) or by simple adsorption and additionally crosslinked with GLA. The experiments indicated that laccase bound by covalent attachment remains very active and stable. The best biocatalysts were MCF and SBA-15 with Si-F moieties on their surface. Thermal inactivation of immobilised and native laccase at 80°C showed a biphasic-type activity decay, that could be modelled with 3- parameter isoenzyme model. It appeared that immobilisation did not significantly change the mechanism of activity loss but stabilised a fraction of a stable isoform. Examination of time needed for 90% initial activity loss revealed that immobilisation prolonged that time from 8 min (native enzyme) up to 155 min (SBA-15SF).
Go to article

Abstract

Biological regeneration of water and organic sorbents used in the absorption of hydrophilic and hydrophobic pollutants, respectively, was studied. In both cases biodegradation takes place in a membrane bioreactor. In the case of organic sorbents regeneration of the biodegradation process is integrated with the extraction of a given pollutant to water phase. In experiments carried out in this work, the proposed systems were tested using a strain of Pseudomonas fluorescens. For hydrophilic compounds experiments were performed using alcohols (1-butanol and 2-propanol) as model substrates. Applying the mathematical model of a membrane bioreactor elaborated previously, the values of pollutant concentration were determined and positively verified in the experiments. This system of water sorbent regeneration is fully satisfying. The process of biodegradation integrated with extraction was analysed on the basis of model compounds such as benzene and toluene. The study confirmed a possibility of organic sorbent (silicone oil) regeneration. However, due to a very high partition coefficient of benzene or toluene between the organic and aqueous phases, the process could be considered only for the case of their high concentrations in the gas directed to absorption.
Go to article

Abstract

This study investigated the quantity and distribution of extracellular polymeric substances (EPS) in aerobic granules. Results showed that EPS play an important role in the formation and stabilisation of granules. The content of EPS significantly increases during the first weeks of biogranulation. An analysis of EPS in the granules revealed that the protein level was 5 times higher than in polysaccharides. The increase of protein content correlated with the growth of cell hydrophobicity (r2 = 0.95). EPS and hydrophobicity are important factors in cell adhesion and formation of granules. The aim of this work was also to determine the distribution of EPS in the granule structure. In situ EPS staining showed that EPS are located mostly in the center of granules and in the subsurface layer. The major components of the EPE matrix are proteins, nucleic acids and β-polysaccharides. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on protein content.
Go to article

Abstract

The purpose of the studies was to estimate efficiency of delivering nebulised drugs into the lower respiratory tract through endotracheal tubes (ET tubes) which are commonly used in the treatment of uncooperative patients. Water solution of Disodium Cromoglycate (DSCG) was nebulised with a constant air flow (25 l/min). Experimental studies were done for eight ET tubes with varying sizes (internal diameter, length) and made of two different materials. Size distribution of aerosol leaving ET tubes was determined with the use of aerosol spectrometer. Fine Particle Fraction (FPF) and Mass Median Aerodynamic Diameter (MMAD) were calculated for the aerosol leaving each tube. Additionally, mass of the Disodium Cromoglycate deposited into each endotracheal tube was determined. ET tubes can significantly influence the parameters of delivered aerosol depending on their diameter. FPF of aerosol delivered in to the respiratory tract is lower if small endotracheal tubes are used. However, MMAD and FPF for large endotracheal tubes are almost identical with MMAD and FPF from nebuliser. The results indicate that a substantial fraction of large droplets is eliminated from the aerosol stream in long endotracheal tubes (270 mm). In this case the mass of drug delivered through ET tubes is reduced but the content of small droplets increases (high value of FPF).
Go to article

Abstract

The world in 21st century is facing the problem of growing energy consumption while the supply of fossil fuels is being reduced. This resulted in the development of research into the use of renewable energy sources and development of new technologies for energy production. In Polish conditions the development of agricultural biogas plants finds its legitimacy in the document developed by the Ministry titled "Trends in agricultural biogas plants in Poland in 2010-2020”. The purpose of this study was to investigate the influence of the weather conditions and the degree of nitrogen fertilisation on yield of reed canary grass (Phalaris Arundinacea L.) and to determine their susceptibility to anaerobic digestion, and usefulness of the production of biogas. Carried out experiments showed that increasing nitrogen fertilisation (from 40 to 120 kg N/ha) linearly increased canary grass green biomass yield from 32 to 46.3 t/ha. However, the highest biogas yield 126 m3/ha was obtained when 80 kg N/ha was applied.
Go to article

Abstract

Polish Academy of Sciences, Institute of Chemical Engineering, 44-100 Gliwice, Bałtycka 5, Poland A review concerning main processes of hydrogenation of carbon oxides towards synthesis of methanol, mixture of methanol and higher aliphatic alcohols and one-step synthesis of dimethyl ether as well as methanol steam reforming is given. Low-temperature methanol catalysts and lowtemperature modified methanol catalysts containing copper as primary component and zinc as secondary one are described.
Go to article

Abstract

The results of activity studies of four catalysts in methanol synthesis have been presented. A standard industrial catalyst TMC-3/1 was compared with two methanol catalysts promoted by the addition of magnesium and one promoted by zirconium. The kinetic analysis of the experimental results shows that the Cu/Zn/Al/Mg/1 catalyst was the least active. Although TMC-3/1 and Cu/Zn/Al/Mg/2 catalysts were characterised by a higher activity, the most active catalyst system was Cu/Zn/Al/Zr. The activity calculated for zirconium doped catalyst under operating conditions was approximately 30% higher that of TMC-3/1catalyst. The experimental data were used to identify the rate equations of two types - one purely empirical power rate equation and the other one - the Vanden Bussche & Froment kinetic model of methanol synthesis. The Cu/ZnO/Al2O3 catalyst modified with zirconium has the highest application potential in methanol synthesis.
Go to article

Abstract

The aim of this work was to present the numerical simulation results determining the distributions of flow velocity and pressure in the individual channels of a plate heat exchanger. The simulations have been conducted by means of the Finite Volume Method (FVM) of numerical computation using the ANSYS CFX software. The computational model constituted spaces between 10 flat, straight flow type plates of the heat exchanger. The obtained results of numerical simulations confirm the presence of inhomogeneous flow conditions in the neighbouring channels between the plates. The computations enabled to point out the regions on the plates, in which insufficient flow can result in problems with their cleaning. The results of this work constitute the first part of a research leading to an assessment of cleaning conditions in plate heat exchangers.
Go to article

Abstract

Measurements of the absorption rate of carbon dioxide into aqueous solutions of N-methyldiethanoloamine (MDEA) and 2-ethylaminoethanol (EAE) have been carried out. On this basis a mathematical model of the performance of an absorption column operated with aqueous solution of a blend of the above amines at elevated temperatures and pressures have been proposed. The results of simulations obtained by means of this model are described. The work is a part of a wider program, aimed at the development of a new process.
Go to article

Abstract

A method of manufacturing hydrogel coatings designed to increase the hydrophilicity of polyurethanes (PU) is presented. Coatings were obtained from polyvinylpyrrolidone (PVP) by free radical polymerisation. The authors proposed a mechanism of a two-step grafting - crosslinking process and investigated the influence of reagent concentration on the coating’s physical properties - hydrogel ratio (HG) and equilibrium swelling ratio (ESR). A surface analysis of freeze-dried coatings using scanning electron microscopy (SEM) showed a highly porous structure. The presented technology can be used to produce biocompatible surfaces with limited protein and cell adhesive properties and can be applied in fabrication of number of biomedical devices, e.g. catheters, vascular grafts and heart prosthesis.
Go to article

Abstract

The knowledge about membrane contactors is growing rapidly but is still insufficient for a reliable designing. This paper presents a new type of membrane contactors that are integrated with one of the following ways of separation by using absorbents, micelles, flocculants, functionalized polymers, molecular imprints, or other methods that are based on aggregation. The article discusses methods for designing multi-stage cascade, usually counter-current. At every stage of this cascade, relevant aggregates are retained by the membrane, while the permeate passes freely through membrane. The process takes place in the membrane boundary layer with a local cross-flow of the permeate and the retentate. So the whole system can be called a cross-counter-current. The process kinetics, k, must be coordinated with the permeate flux, J, and the rate of surface renewal of the sorbent on the membrane surface, s. This can be done by using ordinary back-flushing or relevant hydrodynamic method of sweeping, such as: turbulences, shear stresses or lifting forces. A surface renewal model has been applied to adjust the optimal process conditions to sorbent kinetics. The experimental results confirmed the correctness of the model and its suitability for design of the new type of contactors.
Go to article

Abstract

Substitution of fossil fuels with alternative energy carriers has become necessary due to climate change and fossil fuel shortages. Fermentation as a way of producing biohydrogen, an attractive and environmentally friendly future energy carrier, has captured received increasing attention in recent years because of its high H2 production rate and a variety of readily available waste substrates used in the process. This paper discusses the state-of-the-art of fermentative biohydrogen production, factors affecting this process, as well as various bioreactor configurations and performance parameters, including H2 yield and H2 production rate.
Go to article

Abstract

The aim of this study was to determine the solubility of CO2 in perfluorodecalin (PFD) which is frequently used as efficient liquid carrier of respiratory gases in bioprocess engineering. The application of perfluorinated liquid in a microsystem has been presented. Gas-liquid mass transfer during Taylor (slug) flow in a microchannel of circular cross section 0.4 mm in diameter has been investigated. A physicochemical system of the absorption of CO2 from the CO2/N2 mixture in perfluorodecalin has been applied. The Henry’s law constants have been found according to two theoretical approaches: physical (H = 1.22·10-3 mol/m3Pa) or chemical (H = 1.26·10-3 mol/m3Pa) absorption. We are hypothesising that the gas-liquid microchannel system is applicable to determine the solubility of respiratory gases in perfluorinated liquids.
Go to article

Abstract

Alginate – chitosan – alginate multilayer hydrogel encapsulation systems were investigated for encapsulation of chondrocytes. Hydrogel is crosslinked due to ionic interaction between cationic chitosan and anionic alginate, and additionally by calcium ions. Two types of chitosan with molecular weight were investigated. Cells were encapsulated in two shape microcapsules, microbeads with diameter size 300 – 400 and 500 - 600 µm and fibres with diameter 500 - 600 µm. The work provides a detailed examination of the impact of the microencapsulation process on the growth of cells. The viability of chondrocytes can be influenced by the size of produced microcapsules, while the shape of microcapsules has no important significance on cell viability. The applied encapsulation methods do not contain harmful stages and create conducive conditions for cell growth. A possible application area of the developed system is dressing and regeneration of damaged joint cartilage.
Go to article

This page uses 'cookies'. Learn more