Search results

Filters

  • Journals
  • Date

Search results

Number of results: 203
items per page: 25 50 75
Sort by:

Abstract

The 802.11ax standard final specification is expected in 2019, however first parameters are just released. The target of the new standard is four times improvement of the average throughput within the given area. This standard is dedicated for usage in dense environment such as stadiums, means of municipal communication, conference halls and others. The main target is to support many users at the same time with the single access point. The question arises if the new standard will have higher throughput then previous ones in the single user mode. The author calculated the maximal theoretical throughput of the 802.11ax standard and compared the results with the throughput of older 802.11 standards such as 802.11n and 802.11ac. The new he-wifi-network example included in the ns-3.27 release of the NS-3 simulator was used to simulate the throughput between the access point and the user terminal. The results indicate that in some conditions the 802.11ac standard has higher throughput than the new 802.11ax standard.
Go to article

Abstract

The objective of research concerned verifying the accuracy of the location and shape of selected lakes presented on topographical maps from various periods, drawn up on different scales. The area of research covered lakes situated in North- Western Poland on the Międzychód-Sieraków Lakeland . An analysis was performed of vector maps available in both analogue and digital format. The scales of these studies range from 1:50 000 to 1:10 000. The source materials were current for the years 1907 through 2013. The shape and location of lakes have been verified directly by means of field measurements performed using the GPS technology with an accuracy class of RTK. An analysis was performed of the location and shape of five lakes. The analysed water regions were vectorised, and their vector images were used to determine quantitative features: the area and length of the shoreline. Information concerning the analysed lakes obtained from the maps was verified on the basis of direct field measurements performed using a GPS RTK receiver. Use was made of georeferential corrections provided by the NAVGEO service or a virtual reference station generated by the ASG EUPOS system. A compilation of cartographic and field data formed the basis for a comparison of the actual area and the length of the shoreline of the studied lakes. Cartographic analyses made it possible to single out the most reliable cartographic sources, which could be used for the purposes of hydrographical analyses. The course of shorelines shows the attached map.
Go to article

Abstract

This research proposes a method to enhance the payload message by embedding messages on the dilated edge areas by the Least Significant Bit (LSB) method. To add security aspects to messages, messages are not embedded directly on the LSB but encrypted with XOR operations with Most Significant Bit (MSB). The experimental results of the test in this study showed that the dilation process to some extent can increase the payload of 18.65% and the average bpp is 1.42 while maintaining the imperceptibilty quality of stego image with an average PSNR value of about 47 dB, SSIM is 0.9977 and MSE is 1.13.
Go to article

Abstract

At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection.
Go to article

Abstract

The data aggregation process of wireless sensor networks faces serious security problems. In order to defend the internal attacks launched by captured nodes and ensure the reliability of data aggregation, a secure data aggregation mechanism based on constrained supervision is proposed for wireless sensor network, which uses the advanced LEACH clustering method to select cluster heads. Then the cluster heads supervise the behaviors of cluster members and evaluate the trust values of nodes according to the communication behavior, data quality and residual energy. Then the node with the highest trust value is selected as the supervisor node to audit the cluster head and reject nodes with low trust values. Results show that the proposed mechanism can effectively identify the unreliable nodes, guarantee the system security and prolong the network lifetime.
Go to article

Abstract

Faithfull detection of non-utilized spectrum hole in available channel is a crucial issue for cognitive radio network. Choosing the best available channel for a secondary user transmission includes settling on decision of accessible choices of free frequency spectrum based on multiple objectives. Thus channel judgment can be demonstrated as several objective decision making (MODM) problem. An ultimate goal of this exploration is to define and execute a technique for multiple objective optimizations of multiple alternative of channel decision in Adhoc cognitive radio network. After a coarse review of an articles related to the multiple objective decision making within a process of channel selection, Multiple Objective Optimization on the basis of the Ratio Analysis (MOORA) technique is taken into consideration. Some important objectives values of non-utilized spectrum collected by a fusion center are proposed as objectives for consideration in the decision of alternatives. MOORA method are applied to a matrix of replies of each channel alternatives to channel objectives which results in set ratios. Among the set of obtained dimensionless ratios, all the channel alternatives are ranked in descending order. In MOORA, channel choices with moderate objectives can top in ranking order, which is hardly conceivable with linearly weighted objectives of the different channel by using different decision making technique.
Go to article

Abstract

Visible Light Communication (VLC) is a technique for high-speed, low-cost wireless data transmission based on LED luminaries. Wireless LAN environments are a major application of VLC. In these environments, VLC is used in place of traditional systems such as Wi-Fi. Because of the physical characteristics of visible light, VLC is considered to be superior to traditional radio-based communication in terms of security. However, as in all wireless systems, the security of VLC with respect to eavesdropping, signal jamming and modification must be analyzed. This paper focuses on the aspect of jamming in VLC networks. In environments where multiple VLC transmitters are used, there is the possibility that one or more transmitters will be hostile (or “rogue”). This leads to communication disruption, and in some cases, the hijacking of the legitimate data stream. In this paper we present the theoretical system model that is used in simulations to evaluate various rogue transmission scenarios in a typical indoor environment. The typical approach used so far in jamming analysis assumes that all disruptive transmissions may be modeled as Gaussian noise, but this assumption may be too simplistic. We analyze and compare two models of VLC jamming: the simplified Gaussian and the exact model, where the full characteristics of the interfering signal are taken into account. Our aim is to determine which methodology is adequate for studying signal jamming in VLC systems.
Go to article

Abstract

This paper proposes a unique method of an error detection and correction (EDAC) circuit, carried out using arithmetic logic blocks. The modified logic blocks circuit and its auxiliary components are designed with Boolean and block reduction technique, which reduced one logic gate per block. The reduced logic circuits were simulated and designed using MATLAB Simulink, DSCH 2 CAD, and Microwind CAD tools. The modified, 2:1 multiplexer, demultiplexer, comparator, 1-bit adder, ALU, and error correction and detection circuit were simulated using MATLAB and Microwind. The EDAC circuit operates at a speed of 454.676 MHz and a slew rate of -2.00 which indicates excellence in high speed and low-area.
Go to article

Abstract

A new simple design methodology which makes LDR output nearly insensitive to jumps of the load current for long times is proposed. This methodology is tested for more than 104 seconds. Our procedure leans on cross coupling of the time second derivative of the LDR power transistor gate and drain voltages along with their currents. This technique keeps low values of these currents in order of nano or hundreds of micro amperes for undershot or overshot cases, respectively. The introduced methodology has been applied to a standard CMOS of 0.18μm technology for NMOS transistors and validated using MATLAB R2014a.
Go to article

Abstract

In this article the magnetic memory model with nano-meter size made from iron cells was proposed. For a purpose of determining the model specifications, the magnetic probes group with different geometrical parameters were examined using numeric simulations for the two different time duration of transitions among quasistable magnetic distributions found in the system, derived from the energy minimums. The geometrical parameters range was found, for which the 16 quasi–stable energetic states exist for the each probe. Having considered these results the 4 bits magnetic cells systems can be designed whose state is changed by spin-polarized current. Time dependent current densities and the current electron spin polarization directions were determined for all cases of transitions among quasi–stable states, for discovered set of 4 bits cells with different geometrical parameters. The 16- states cells, with the least geometrical area, achieved the 300 times bigger writing density in comparison to actual semiconductor solutions with the largest writing densities. The transitions among quasi-stable states of cells were examined for the time durations 105 times shorter than that for up to date solutions.
Go to article

Abstract

In a rectilinear route, a moving sink is restricted to travel either horizontally or vertically along the connecting edges. We present a new algorithm that finds the shortest round trip rectilinear route covering the specified nodes in a grid based Wireless Sensor Network. The proposed algorithm determines the shortest round trip travelling salesman path in a two-dimensional grid graph. A special additional feature of the new path discovery technique is that it selects that path which has the least number of corners (bends) when more than one equal length shortest round trip paths are available. This feature makes the path more suitable for moving objects like Robots, drones and other types of vehicles which carry the moving sink. In the prosed scheme, the grid points are the vertices of the graph and the lines joining the grid points are the edges of the graph. The optimal edge set that forms the target path is determined using the binary integer programming.
Go to article

Abstract

Multiple Input Multiple Output (MIMO (techniques use multiple antennas at both transmitter and receiver for increasing the channel reliability and enhancing the spectral efficiency of wireless communication system.MIMO Spatial Multiplexing (SM) is a technology that can increase the channel capacity without additional spectral resources. The implementation of MIMO detection techniques become a difficult mission as the computational complexity increases with the number of transmitting antenna and constellation size. So designing detection techniques that can recover transmitted signals from Spatial Multiplexing (SM) MIMO with reduced complexity and high performance is challenging. In this survey, the general model of MIMO communication system is presented in addition to multiple MIMO Spatial Multiplexing (SM) detection techniques. These detection techniques are divided into different categories, such as linear detection, Non-linear detection and tree-search detection. Detailed discussions on the advantages and disadvantages of each detection algorithm are introduced. Hardware implementation of Sphere Decoder (SD) algorithm using VHDL/FPGA is also presented.
Go to article

Abstract

A low drop-out [LDO] voltage regulator with fast transient response which does not require a capacitor for proper operation is proposed in this paper. Recent cap-less LDOs do not use off chip capacitor but instead they use on chip capacitor which occupy a large area on the chip. In the proposed LDO, this on chip capacitor is also avoided. A novel secondary local feedback technique is introduced which helps to achieve a good transient response even in the absence of output capacitor. Further an error amplifier that does need compensation capacitor is selected to reduce the on chip area. Stability analysis shows that the proposed LDO is stable with a phase margin of 78°. The proposed LDO is laid out using Cadence Virtuoso in 180 nm standard CMOS technology. Post layout simulation is carried out and LDO gives 6mV=V and 360µV=mA line and load regulation respectively. An undershoot of 120 mV is observed during the load transition from 0 mA to 50 mA in 1 µs transition time, however LDO is able to recover within 1:4 µs. Since capacitor is not required in any part of design, it occupies only 0:010824 mm2 area on the chip.
Go to article

Abstract

The paper presents the concept of a fully planar treeshaped antenna with quasi-fractal geometry. The shape of the proposed radiator is based on a multi-resonant structure. Developed planar tree has symmetrical branches with different length and is fed by a coplanar waveguide (CPW) with modified edge of the ground plane. The antenna of size 29 mm x25 mm has been designed on Taconic - RF-35 substrate (r = 3.5, tg= 0.0018, h = 0.762 mm). The paper shows simulated and measured characteristics of return loss, as well as measured radiation patterns. The proposed antenna could be a good candidate for broadband applications (for instance: wideband imaging for medical application and weather monitoring radars in satellite communication etc.)
Go to article

Abstract

In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University.
Go to article

Abstract

A compact planar multiband antenna operating at 3.1 (S-band) /4.7/6.4/7.6 (C-band) /8.9/10.4/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a rectangular radiator in which an E-shaped slot is etched out and a microstrip feed line. The E-shaped slot modifies the total current path thereby making the antenna to operate at seven useful bands. No external impedance matching circuit is used and the impedance matching at these bands are solely achieved by using a rectangular microstrip feed line of length 10mm (L6) and width 2mm (W10). The antenna has a compact dimension of ���� × ���� × ��. �� ������ and exhibits S11<-10dB bandwidth of about 6.45% (3.2-3.0GHz), 8.5% (4.9-4.5GHz), 7.6% (6.7-6.2GHz), 3.9% (7.8-7.5GHz), 5.7% (9.1-8.6GHz), 1.2% (10.44-10.35GHz) and 2.2% (11.87-11.62GHz). The simulation analysis of the antenna is carried out by using HFSS v.13.0.
Go to article

This page uses 'cookies'. Learn more