Search results

Filters

  • Journals
  • Date

Search results

Number of results: 226
items per page: 25 50 75
Sort by:

Abstract

Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC) is one of the promising techniques proposed for 5G systems. It allows multiple users with different channel coefficients to share the same (time/frequency) resources by allocating several levels of (power/code) to them. In this article, a design of a cooperative scheme for the uplink NOMA Wi-Fi transmission (according to IEEE 802.11 standards) is investigated. Various channel models are exploited to examine the system throughput. Convolutional coding in conformance to IEEE 802.11a/g is applied to evaluate the system performance. The simulation results have been addressed to give a clear picture of the performance of the investigated system.
Go to article

Abstract

Based on the publications regarding new or recent measurement systems for the tokamak plasma experiments, it can be found that the monitoring and quality validation of input signals for the computation stage is done in different, often simple, ways. In the paper is described the unique approach to implement the novel evaluation and data quality monitoring (EDQM) model for use in various measurement systems. The adaptation of the model is made for the GEM-based soft X-ray measurement system FPGA-based. The EDQM elements has been connected to the base firmware using PCI-E DMA real-time data streaming with minimal modification. As additional storage, on-board DDR3 memory has been used. Description of implemented elements is provided, along with designed data processing tools and advanced simulation environment based on Questa software.
Go to article

Abstract

We present a new hash function based on irregularly decimated chaotic map, in this article. The hash algorithm called SHAH is based on two Tinkerbell maps filtered with irregular decimation rule. We evaluated the novel function using distribution analysis, sensitivity analysis, static analysis of diffusion, static analysis of confusion, and collision analysis. The experimental data show that SHAH satisfied valuable level of computer security.
Go to article

Abstract

The model is developed for the intellectualized decision-making support system on financing of cyber security means of transport cloud-based computing infrastructures, given the limited financial resources. The model is based on the use of the theory of multistep games tools. The decision, which gives specialists a chance to effectively assess risks in the financing processes of cyber security means, is found. The model differs from the existing approaches in the decision of bilinear multistep quality games with several terminal surfaces. The decision of bilinear multistep quality games with dependent movements is found. On the basis of the decision for a one-step game, founded by application of the domination method and developed for infinite antagonistic games, the conclusion about risks for players is drawn. The results of a simulation experiment within program implementation of the intellectualized decision-making support system in the field of financing of cyber security means of cloudbased computing infrastructures on transport are described. Confirmed during the simulation experiment, the decision assumes accounting a financial component of cyber defense strategy at any ratios of the parameters, describing financing process.
Go to article

Abstract

This work concerns measurements of the radiant intensity emitted by LEDs. The influence of selected factors and parameters on the final measurement result are discussed. The research was conducted using two type of detectors: light meter and CCD camera, to compare the degree of influence of these parameters depending on the measurement instrument used.
Go to article

Abstract

A trellis coded 4-ary Pulse Amplitude Modulation (4-PAM) is presented, where the encoding algorithm is derived from Distance Preserving Mapping (DPM) algorithm. In this work, we modify the DPM algorithm for 4-PAM and obtain a new construction for mapping binary sequences to permutation sequences, where the permutation sequences are obtained by permuting symbols of a 4-PAM constellation. The resulting codebook of permutation sequences formed this way are termed mappings. We also present several metrics for assessing the performance of the mappings from our construction, and we show that a metric called the Sum of Product of Distances (SOPD) is the best metric to use when judging the performance of the mappings. Finally, performance results are presented, where the mappings from our construction are compared against each other and also against the conventional mappings in the literature.
Go to article

Abstract

PCFs (Photonic Crystal Fibers) with ‘T’ – shaped core have been proposed in this paper. ‘T’ –shaped core PCF structures have been analyzed using two different background materials: silica and lead silicate. A total of 3600 rotation at an interval of 900 has been introduced in the design of PCF structures. PCF structures A, B, C and D with rotation of 00, 900, 1800 and 2700 have silica as wafer. Similarly PCF structures E, F, G and H with similar rotation have lead silicate as background material. Numerical investigations shows structures ‘D’, ‘F’, ‘G’ and ‘H’ to have anomalous dispersion. PCF structures ‘F’, ‘G’, and ‘H’ have reported birefringence of the order of 10-2. Besides, other PCF structures report birefringence of the order of 10-3. Ultra low confinement loss has been observed in all the investigated PCF structures. Moreover, splice loss observed by the structure is very low. Large mode area has been shown by all the designed PCF structures.
Go to article

Abstract

Analysis of harmonic parameters and detection of foreign frequencies in diagnostic signals, which are most often interpreted as fault results, may be problematic because of the spectral leakage effect. When the signal contains only the fundamental frequency and harmonics, it is possible to adjust its spectral resolution to eliminate any distortions for regular frequencies. The paper discusses the influence of resampling distortions on the quality of spectral resolution optimization in diagnostic signals, recorded digitally for objects in a steady state. The method effectiveness is measured with the use of a synthetic signal generated from an analog prototype whose parameters are known. In order to achieve low values of harmonic amplitude errors in the diagnostic signal, a high quality resampling algorithm should be used, therefore the analysis of distortions generated by four popular reasampling methods is performed. Errors are measured for test signals containing different spectral structures. Finally, the results of the test of the analyzed method in practical applications are presented.
Go to article

Abstract

In this paper, the application of the Artificial Neural Network (ANN) algorithm has been used for testing selected specification parameters of voltage-controlled oscillator. Today, mixed electronic circuits specification time is an issue. An analog part of Phase Locked Loopis a voltage-controlled oscillator, which is very sensitive to variation of the technology process. Fault model for the integrated circuit voltage control oscillator (VCO) in ring topology is introduced and the before test stage classificatory is designed. In order to reduce testing time and keep the specification accuracy (approximation) on the high level, an artificial neural network has been applied. The features selection process and output coding for specification parameters are described. A number of different ANN have been designed and then compared with real specification of the VCO. The results obtained gives response in short time with high enough accuracy.
Go to article

Abstract

This paper presents the comparison of filtering methods – median filtration, moving average Kalman filtration and filtration based on a distance difference to determine the most accurate arm length for circular motion, as a model of wind turbine propellers movement. The experiments have been performed with the UWB technology system containing four anchors and a tag attached to 90cm arm that was rotated with speed up to 15.5 rad/s (as a linear speed of 50km/h). The trilateration concept based on the signal latency has been described in order to determinate the position of an object on circular trajectory. The main objective is the circle plane rotation (parallel and perpendicular) with respect to the anchors plane reference system. All research tasks have been performed for various cases of motion schemes in order to get the filtration method for object in motion under best accuracy goal. Filtration methods have been applied on one of two stages of the positioning algorithm: (1) on raw data got from the single anchor-tag (before trilateration); (2) on the position obtained from four anchors and tag (after trilateration). It has been proven that the appropriate filtering allows for higher location accuracy. Moreover, location capabilities with the use of UWB technology – shows prospective use of positioning of objects without access to other positioning forms (ex. GPS) in many aspects of life such as currently developing renewable, green energy sources like wind turbines where the circular motion plays an important role, and precise positioning of propellers is a key element in monitoring the work of the whole wind turbine.
Go to article

Abstract

In the paper, the authors discuss the numerical and experimental modal analysis of the cantilever thin-walled beams made of a carbon-epoxy laminate. Two types of beams were considered: circumferentially asymmetric stiffness (i.e., CAS) and circumferentially uniform stiffness (i.e., CUS) beams. The layer-up configurations of the laminate were chosen to get a vibration mode coupling effect in both analysed cases. The aim of the paper was to perform the numerical and experimental modal analysis of the composite structures, when a flapwise bending with torsion coupling effect or flapwise-chordwise bending coupling effect took place. Firstly, numerical studies by the finite element method was performed. The numerical simulations were carried out by the Lanczos method in the Abaqus software package. The natural frequencies and the corresponding free vibration modes were determined. Next, the experimental modal analyses of the CAS and CUS beams were performed. The test stand was consisted of a special grip, two beams with an adhered holder, the LMS Scadas III system with a modal hammer and an acceleration sensor. Finally, the results of both methods were compared.
Go to article

This page uses 'cookies'. Learn more