Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 156
items per page: 25 50 75
Sort by:

Abstract

This paper deals with numerical and analytical modelling of a diamond or silicon particle embedded in a metallic matrix. The numerical model of an elastic particle in a metallic matrix was created using the Abaqus software. Truncated octahedron-shaped and spherical-shaped diamond particles were considered. The numerical analysis involved determining the effect of temperature on the elastic and plastic parameters of the matrix material. The analytical model was developed for a spherical particle in a metallic matrix. The comparison of the numerical results with the analytical data indicates that the mechanical parameters responsible for the retention of diamond particles in a metal matrix are: the elastic energy of the particle, the elastic energy of the matrix and the radius of the plastic zone around the particle. An Al-based alloy containing 5% of Si and 2% of Cu was selected to study the mechanical behaviour of silicon precipitates embedded in the aluminium matrix. The model proposed to describe an elastic particle in a metallic matrix can be used to analyze other materials with inclusions or precipitates.
Go to article

Abstract

In sand casting, Fused Deposition Modeling (FDM) printing by using Poly Lactic Acid (PLA) filament is one of the innovative foundry technologies being adopted to substitute traditional pattern making. Several literatures have reported the influence of process parameters such as raster angle and print speed on some mechanical properties of FDM-printed, PLA-prototypes used in other applications. This study investigated the effects of interior fill, top solid layer, and layer height on the compressive strength of rapid patterns for sand casting application. Different values of the process parameters were used to print the pre-defined samples of the PLA-specimens and a compression test was performed on them. The coupled effects of the process parameters on compressive strength were investigated and the optimum values were determined. Interior fill of 36%, layer height of 0.21 mm and top solid layer of 4 were found to produce a FDM-printed, PLApattern that sustained a compaction pressure of 0.61 MPa. A simulation analysis with ANSYS® to compare failure modes of both experiment and model shows a similarity of buckling failure that occurred close to the base of each specimen.
Go to article

Abstract

Iron is presented as an impurity in Al-Si alloys and occurs in the form of the β-Al5FeSi phase formations. The presence of iron and other elements in the alloy causes the formation of large intermetallic phases. Due to the high brittleness of this phase, it reduces the mechanical properties and increases the porosity. Manganese is used to inhibit the formation of this detrimental phase. It changes the morphology of the phase to polyhedral crystals, skeletal formations, or Chinese script. The present article deals with the influence of various amounts of manganese (0.1; 0.2; 0.4; 0.6 wt. %) on the formation of iron-based intermetallic phases in the AlSi7Mg0.3 alloy with different levels of iron content (0.4; 0.8, 1.2 wt. %). The increase of iron content in each alloy caused the creation of more intermetallic compounds and this effect has been more significant with higher concentrations of manganese. In alloys where the amount of 1.2 wt. % iron is present, the shape of eutectic silicon grain changes from angular to short needle type.
Go to article

Abstract

The article presents results of studies of silicon – molybdenum cast iron (4.42% Si, 2.59% Mo and 2.48% C wt.-%) crystallization process. Metallographic analysis was carried out using SEM-scanning electron microscopy with the EDS system. In order to determine the phase composition, X-ray diffraction studies were performed. Thermo-Calc, a computer simulation program, was used to simulate the crystallization process. . The obtained data allowed to describe the effect of some elements on the crystallization process. The silicon phase of MnSi could not be identified during metallographic studies. Also, computer simulation of the crystallization process did not answer the question at which point the silicon phase of MnSi crystallizes in the tested alloy. Therefore, not all results obtained were linked to the registered crystallization process (TDA process). The EDS analysis revealed an unusual distribution of molybdenum in the microstructure of the sample, where it is clearly visible that the area enriched with this element is also the separation of spheroidal graphite. The possibility of occurrence of Mo-rich micro-areas found in graphite is considered. The case is debatable and difficult to resolve at this stage. Perhaps, at such a high concentration of molybdenum (2.59% Mo) in the alloy, conditions are created for simultaneously crystallization of graphite and molybdenum phases.
Go to article

Abstract

In order to study the effects of various gating systems on the casting of a complex aluminum alloyed multi-way valve body, both software simulation analysis and optimization were carried out. Following, the aluminum alloyed multi-way valve body was cast to check the pouring of the aluminum alloy valve body. The computer simulation results demonstrated that compared to the single side casting mode, the casting method of both sides of the gating system would reduce the filling of the external gas, while the air contact time would be lower. Adversely, due to the pouring on both sides, the melt cannot reach at the same time, leading to the liquid metal speed into the cavity to differ, which affected the liquid metal filling stability. The riser unreasonable setting led to the solidification time extension, resulting in a high amount of casting defects during solidification. Also, both gating systems led the entire casting inconsequential solidification. To overcome the latter problems, a straight gate was set at the middle pouring and the horizontal gate diversion occurred on both sides of pouring, which could provide better casting results for the aluminum alloyed multi-valve body.
Go to article

Abstract

The constantly developing and the broadly understood automation of production processes in foundry industry, creates both new working conditions - better working standards, faster and more accurate production - and new demands for previously used materials as well as opportunities to generate new foundry defects. Those high requirements create the need to develop further the existing elements of the casting production process. This work focuses on mechanical and thermal deformation of moulding sands prepared in hot-box technology. Moulding sands hardened in different time periods were tested immediately after hardening and after cooling. The obtained results showed that hardening time period in the range 30-120 sec does not influence the mechanical deformation of tested moulding sands significantly. Hot distortion tests proved that moulding sands prepared in hot-box technology can be characterized with stable thermal deformation up to the temperature of circa 320oC.
Go to article

Abstract

A measuring system was developed for the measurement of ejector forces in the die casting process. When selecting the sensor technology, particular care was taken to ensure that measurements can be taken with a high sampling rate so that the fast-running ejection process can be recorded. For this reason, the system uses piezoelectric force sensors which measure the forces directly at the individual ejector pins. In this way, depending on the number of sensors, it is possible to determine both the individual ejector forces and the total ejector force. The system is expandable and adaptable with regard to the number and position of the sensors and can also be applied to real HPDC components. Automatic triggering of the measurements is also possible. In addition to the measuring system, a device and a method for in-situ calibration of the sensors have also been developed. To test the measuring system, casting experiments were carried out with a real aluminium HPDC aluminium component. The experiments showed that it is possible to measure the ejector forces with sufficient sampling rate and also to observe the process steps of filling, intensification and die opening by means of ejector forces. Experimental setup serves as a basis for future investigations regarding the influencing parameters on the ejection process.
Go to article

Abstract

The research described in this contribution is focused on fractographic analysis of the fracture area of newly developed eutectic silumin type AlSi9NiCuMg0.5 (AA 4032), which was developed and patented by a team of staff of the Faculty of Mechanical Engineering. The paper presents determination of the cause of casting cracks in operating conditions. Fractographic analysis of the fracture area, identification of the structure of the casting, identification of structural components on the surface of the fracture surface and chemical analysis of the material in the area of refraction were performed within the experiment. Al-Si alloys with high specific strength, low density, and good castability are widely used in pressure-molded components for the automotive and aerospace industries. The results shown that the inter-media phases Fe-Al and Fe-Si in aluminium alloys lead to breakage across the entire casting section and a crack that crossed the entire cross section, which was confirmed by EDS analysis.
Go to article

Abstract

This article presents measurements of the thickness of alcohol-based coatings on sand foundry cores and moulds. These coatings were applied using two methods, the dipping method and the painting method. For the purposes of the study, a zircon alcohol-based coating was prepared with three different levels of nominal viscosity; very thin at 10s, average at 20s, and thick at 30s. The coating was applied to a core made of quartz sand and furan resin. The cores were made of sand with three different grain sizes; dL = 0.22 mm – fine sand, dL = 0.33 mm medium sand, and dL = 0.47 mm coarse sand. In the study, the thickness of the coating obtained to the core was measured immediately after application as well as after drying. Additionally, the extent of penetration into the intergranular spaces of the core matrix was measured. On the basis of this study, the impact of the grain size of the core matrix on the thickness of the coating and its penetration into the core was assessed. The thickness of coatings obtained using different application methods was also assessed.
Go to article

Abstract

By the very nature of their work, castings used in furnaces for heat treatment and thermo-chemical treatment are exposed to the effect of many unfavorable factors causing their deformation and cracking, significantly shortening the lifetime. The main source of damage are the micro- and macro-thermal stresses appearing in each cycle. As the cost of furnace instrumentation forms a significant part of the total furnace cost, in designing this type of tooling it is important to develop solutions that delay the damage formation process and thus extend the casting operation time. In this article, two structural modifications introduced to pallets castings to reduce thermal stresses arising at various stages of the cooling process are proposed. The essence of the first modification consists in making technological recesses in the wall connections, while the aim of the second one is to reduce the stiffness of the pallet by placing expanders in the external walls. Using the results of simulation analyses carried out by the finite element method, the impact of both proposed solutions on the level of thermal stresses was evaluated.
Go to article

Abstract

In the foundry industry, many harmful compounds can be found, which as a result of gradual but long-term exposure to employees bring negative results. One of such compounds is phenol (aromatic organic compound), which its vapours are corrosive to the eyes, the skin, and the respiratory tract. Exposition to this compound also may cause harmful effects on the central nervous system and heart, resulting in dysrhythmia, seizures, and coma. Phenol is a component of many foundry resins, especially used in shell moulds in the form of resincoated sands. In order to identify it, the pyrolysis gas chromatography-mass spectrometry method (Py-GC/MS) was used. The tests were carried out in conditions close to real (shell mould process – temperature 300°C). During the measurement, attention was focused on the appropriate selection of chromatographic analysis conditions in order to best separate the compounds, as it is difficult to separate the phenol and its derivatives. The identification of compounds was based on own standards.
Go to article

Abstract

The paper presents the cellular automaton (CA) model for tracking the development of dendritic structure in non-equilibrium solidification conditions of binary alloy. Thermal, diffusion and surface phenomena have been included in the mathematical description of solidification. The methodology for calculating growth velocity of the liquid-solid interface based on solute balance, considering the distribution of the alloy component in the neighborhood of moving interface has been proposed. The influence of solidification front curvature on the equilibrium temperature was determined by applying the Gibbs Thomson approach. Solute and heat transfer equations were solved using the finite difference method assuming periodic boundary conditions and Newton cooling boundary condition at the edges of the system. The solutal field in the calculation domain was obtained separately for solid and liquid phase. Numerical simulations were carried out for the Al-4 wt.% Cu alloy at two cooling rates 15 K/s and 50 K/s. Microstructure images generated on the basis of calculations were compared with actual structures of castings. It was found that the results of the calculations are agreement in qualitative terms with the results of experimental research. The developed model can reproduce many morphological features of the dendritic structure and in particular: generating dendritic front and primary arms, creating, extension and coarsening of secondary branches, interface inhibition, branch fusion, considering the coupled motion and growth interaction of crystals.
Go to article

Abstract

The paper presents the theory of constraints (TOC) as a method used to improve results in a complex, multiplants organization. In the article the assumptions of this method has been presented as well as iterative approach concerning how to launch it in practice. Main indicators for organizational effectiveness assessment have also been presented. The maximization of production assets utilization is a key issue for competitive organization in the changing market conditions. An appropriate usage of the theory of constraints enables efficient allocation of financial assets among particular plants within a capital group. An application of a method has been presented based on throughput analyses and its influence to improve financial results of one plant organization and synergy effect in multiplants organization. The theory of constraints can be used in almost every kind of business sectors, among them are metal and foundry industries. It allows to be implemented in production organizations as well as in any other company’s profiles. Everywhere the constraint has been defined there is a chance to achieve an improvement following the presented method. The examples have been taken from the casting plants which use continuous and mold casting technologies. The examples show that TOC approach can be successfully employed as the improvement tool of foundries’ performances.
Go to article

Abstract

In this work, the effects of 75 mm thick cast iron, (casting mould YIV) composition (Cu) and heat treatment were investigated on the microstructure and mechanical properties (hardness, elongation, tensile strength, yield strength) of ductile iron castings. As a result of adding Cu, the amount of pearlite is at 80% reduces of amount of ferrite. Normalizing of non-alloy cast iron increases the amount of pearlite to 70%. It also, increases tensile strength (659 MPa) and hardness (248 HB). Studied metallographic crossections were made from the grip sections of the tensile specimens. The structure composition and the characteristics of graphite were determined by computer image analysis. Measurements of graphite of non-alloy cast iron after normalizing and in cooper cast iron indicate the approximate amount of precipitates of graphite and their approximate average diameters. The applied normalizing and the additive alloy (Cu) were established to give comparable mechanical properties and structure of matrix in thick-walled castings.
Go to article

Abstract

This article discusses results of an analysis of mechanical properties of a sintered material obtained from a mixture of elemental iron, copper and nickel powders ball milled for 60 hours. The powder consolidation was performed by hot pressing in a graphite mould. The hot pressing was carried out for 3 minutes at 900 °C and under a pressure of 35 MPa. The sintered specimens were tested for density, porosity, hardness and tensile strength. Their microstructures and fracture surfaces were also examined using a scanning electron microscope (SEM). The study was conducted in order to determine the suitability of the sintered material for the manufacture of metal-bonded diamond tools. It was important to assess the effects of chemical composition and microstructure of the sintered material on its mechanical properties, which were compared with those of conventional metal bond material produced from a hot-pressed SMS grade cobalt powder. Although the studied material shows slightly lower strength and ductility as compared with cobalt, its hardness and offset yield strength are sufficiently high to meet the criteria for less demanding applications.
Go to article

Abstract

Measurements of the hardening process course of the selected self-hardening moulding sands with the reclaimed material additions to the matrix, are presented in the hereby paper. Moulding sands were produced on the „Szczakowa” sand (of the Sibelco Company) as the matrix of the main fraction FG 0,40/0,32/0,20, while the reclaim was added to it in amounts of 20, 50 and 70%. Regeneration was performed with a horizontal mechanical regenerator capacity of 10 t/h. In addition, two moulding sands, one on the fresh sand matrix another on the reclaimed matrix, were prepared for comparison. Highly-fluid urea-furfuryl resin was used as a binder, while paratoluensulphonic acid as a hardener. During investigations the hardening process course was determined, it means the wave velocity change in time: cL = f(t). The hardening process kinetics was also assessed (dClx/dt = f(t)). Investigations were carried out on the research stand for ultrasound tests. In addition strength tests were performed.
Go to article

Abstract

This article discusses issues related to continuous casting of brass. The tested material was CuZn39Pb2 brass with the use of continuous casting and different parameters of the process. The position consists of a melting furnace with a graphite refining pot of about 4000 cm3 chuting capacity, a graphite crystallizer of 9,5 mm nominal diameter, a primary and secondary cooling system and an extracting system as well. The analysis was carried out in terms of technological parameters of the process and type of charge. Highlighted: feedrate ingot, number of stops, and technological temperatures. The surface quality of the obtained ingots and the structure were analyzed. The most favorable conditions were indicated and technological recommendations indicated. They have been distinguished for ingots for plasticity and other technologies. Favorable casting conditions are low feed and low temperature. Due to the presence of impurities coming from the charge it is disadvantageous to have Ni greater than 0.053% by mass, and Fe more than 0.075% by mass. It is recommended to maintain a high zinc content in the melt which is associated with non-overheating of the metal during casting and earlier melting.
Go to article

Abstract

In the knock-out process, as well as in the preliminary phase of moulding sand reclamation, the issue of energy demand for the process of crushing used sand agglutinations, preferably to single grains, is particularly important. At present, numerical values of moulding sand impact resistance, which would allow energy-related aspects of this process to be forecast, are not known, as such research has not been carried out. It seems that impact resistance tested on very small cross-section samples, which allows us to very precisely reveal some unique features of a moulding sand with organic and inorganic binders, is an important parameter, which so far has not been taken into account for evaluation of mechanical properties of moulding sands. Preliminary attempts to determine impact resistance of moulding sands have been carried out as part of own research of the author. The conducted investigations aimed at determining the relationships between the obtained values of tensile strength and impact resistance of moulding sands. In addition, the effect of holding samples at temperatures of 100oC, 200oC, 300oC on the value of impact resistance was determined, both for sands made with fresh and with reclaimed sand grains.
Go to article

Abstract

The paper presents a detailed description of one of the newest methods of vacuum saturation of reinforcing preforms in gypsum molds. As an appropriate selection of the infiltration time is a crucial problem during realization of this process, aim of the analysis shown in the paper is to present methods of selection of subatmospheric pressure application time, a sequence of lowering and increasing pressure, as well as examining influence of structure of reinforcing preforms on efficiency of this process. To realize the aim, studies on infiltration of reinforcing preforms made of a corundum sinter of various granulation of sintered particles with a model alloy were conducted. The infiltration process analysis was carried out in two stages. The first stage consisted in investigation of influence of lengthening of sucking off air from the reinforcing preforms on efficiency of this process. In the second stage, an analysis of influence of a two-staged infiltration process on saturation of the studied materials was conducted. Because the studied preforms were of similar porosity, the obtained differences of the saturation level of particular preforms have shown, that the saturation process is influenced mostly by size of pores present in the reinforcement. Because of these differences, each reinforcement type requires individual selection of time and sequence of the saturation process. For reinforcements of higher pore diameter, it is sufficient to simply increase air sucking off time to improve the saturation, while for reinforcement of smaller pore diameter, it is a better solution to apply the two-staged process of sucking off air. Application of the proposed analysis method allows not only obtaining composite castings of higher quality, but also economical optimization of the whole process.
Go to article

Abstract

This work presents the project of the application of Case-based reasoning (CBR) methodology to an advisory system. This system should give an assistance by selection of proper alloying additives in order to obtain a material with predetermined mechanical properties. The considered material is silumin EN AC-46000 (hypoeutectic Al-Si alloy) that is modified by the addition of Cr, Mo, V and W elements in the range from 0% to 0.5% in the modified alloy. The projected system should indicate to the user the content of particular additives so that the obtained material is in the chosen range of parameters: tensile strength Rm, yield strength Rp0.2, elongation A and hardness HB. The CBR methodology solves new problems basing on the solutions of similar problems resolved in the past. The advantage of the CBR application is that the advisory system increases knowledge base as the subsequent use of the system. The presented design of the advisory system also considers issues related to the ergonomics of its operation.
Go to article

Abstract

The organo-inorganic commercial binder Albertine F/1 (Hüttenes-Albertus) constituting the starch-aluminosilicate mixture was directed to structural studies. The paper presents a detailed structural analysis of the binder before and after exposure to physical curing agents (microwaves, high temperature) based on the results of infrared spectroscopy studies (FTIR). An analysis of structural changes taking place in the binder system with the quartz matrix was also carried out. Based on the course of the obtained IR spectra, it was found that during the exposure on physical agents there are structural changes within the hydroxyl groups in the polymeric starch chains and silanol groups derived from aluminosilicate as well as in the quartz matrix (SiO2). The curing of the molding sand takes place due to the evaporation of the solvent water and the formation of intramolecular and intermolecular cross-linking hydrogen bonds. Type and amount of hydrogen bonds presence in cured molding sand have an impact on selected properties of molding sand. Results indicates that for molding sand with Albertine F/1 during conventional heating a more extensive network of hydrogen bonds is created.
Go to article

Abstract

The paper concerns experimental work studying chemical composition, structures and selected mechanical properties of castings produced by rheocasting method SEED. After previous experiments, which showed inclusions in the primary phase α(Al) when observing structures, hypothesis of external nuclei was taken. The main goal of the work was to determine the influence of inoculation by various additions of titanium/boron based inoculant on the structure and properties of AlSi7Mg0,3 alloy. The master alloy AlTi5B1 was added in amounts of 0,05, 0,1, 0,15, 0,2 wt %. Metallographic observation by light and SEM microscopy was used for analysing the structures. Measurements of grain size were realised and evaluated. Brinell hardness measurements were performed. Chemical composition was measured by GDS analysis. Undertaken experiments did not prove the effect of inoculation of combined AlTi5B1 master alloy on castings made of AlSi7Mg0,3 alloy made by rheocasting SEED at given amounts and conditions.
Go to article

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45 GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers presence on the amount of released harmful products. The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the 0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be observed.
Go to article

Abstract

The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140oC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
Go to article

This page uses 'cookies'. Learn more