Search results

Filters

  • Journals
  • Date

Search results

Number of results: 193
items per page: 25 50 75
Sort by:

Abstract

Constantly developing nanotechnology provides the possibility of manufacturing nanostructured composites with a polymer matrix doped with ceramic nanoparticles, including ZnO. A specific feature of polymers, i.e. ceramic composite materials, is an amelioration in physical properties for polymer matrix and reinforcement. The aim of the paper was to produce thin fibrous composite mats, reinforced with ZnO nanoparticles and a polyvinylpyrrolidone (PVP) matrix obtained by means of the electrospinning process and then examining the influence of the strength of the reinforcement on the morphology and optical properties of the composite nanofibers. The morphology and structure of the fibrous mats was examined by a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and Fourier-transform infrared spectroscopy (FTIR). UV –Vis spectroscopy allowed to examine the impact of zinc oxide on the optical properties of PVP/ZnO nanofibers and to investigate the width of the energy gap.
Go to article

Abstract

The genesis of both coherent structures and reactive flow control strategies is explored. Futuristic control systems that utilize mi-crosensors and microactuators together with artificial intelligence to target specific coherent structures in a transitional or turbulent flow are considered. Of possible interest to the readers of this journal is the concept of smart wings, to be briefly discussed early in the article.
Go to article

Abstract

The paper presents local dynamic approach to integration of an ensemble of predictors. The classical fusing of many predictor results takes into account all units and takes the weighted average of the results of all units forming the ensemble. This paper proposes different approach. The prediction of time series for the next day is done here by only one member of an ensemble, which was the best in the learning stage for the input vector, closest to the input data actually applied. Thanks to such arrangement we avoid the situation in which the worst unit reduces the accuracy of the whole ensemble. This way we obtain an increased level of statistical forecasting accuracy, since each task is performed by the best suited predictor. Moreover, such arrangement of integration allows for using units of very different quality without decreasing the quality of final prediction. The numerical experiments performed for forecasting the next input, the average PM10 pollution and forecasting the 24-element vector of hourly load of the power system have confirmed the superiority of the presented approach. All quality measures of forecast have been significantly improved.
Go to article

Abstract

The paper presents the method of assessment of learning outcomes acquirement by students. The analysis is based on the results of the final matriculation exam in mathematics. For crisp and both types of fuzzy relations, cut scores (passing scores) can be defined along with the method of preparing rankings of students. The advantage of applying type 2 fuzzy relations is the lack of the necessity for experts to agree to one level (one number) of verification of learning outcomes by items created for the examination. Based on the results of the exam and experts’ knowledge, the decision support system for calculating the levels of learning outcomes acquirement, making decisions about passing the examination and preparing rankings of students, can be developed. Additionally, the rank reversal phenomenon does not burden the proposed method.
Go to article

Abstract

Recently, business protocol discovery has taken more attention in the field of web services. This activity permits a better description of the web service by giving information about its dynamics. The latter is not supported by theWSDL language which concerns only the static part. The problem is that the only information available to construct the dynamic part is the set of log files saving the runtime interaction of the web service with its clients. In this paper, a new approach based on the Discrete Wavelet Transformation (DWT) is proposed to discover the business protocol of web services. The DWT allows reducing the problem space while preserving essential information. It also overcomes the problem of noise in the log files. The proposed approach has been validated using artificially-generated log files.
Go to article

Abstract

In a reality of global competition, companies have to minimize production costs and increase productivity in order to boost com-petitiveness. Facility layout design is one of the most important and frequently used efficiency improvement methods for reducing operational costs in a significant manner. Facility layout design deals with optimum location of facilities (workstation, machine, etc.) on the shop floor and optimum material flow between these objects. In this article, the objectives and procedure of layout design along with the calculation method for layout optimization are all introduced. The study is practice-oriented because the described case study shows how the layout of an assembly plant can be modified to form an ideal re-layout. The research is novel and innovative because the facility layout design and 4 lean methods (takt-time design, line balance, cellular design and one-piece flow) are all combined in order to improve efficiency more significantly, reduce costs and improve more key performance indicators. From the case study it can be concluded that the layout redesign and lean methods resulted in significant reduction of the following seven indicators: amount of total workflow, material handling cost, total travel distance of goods, space used for assembly, number of workers, labor cost of workers and the number of Kanban stops.
Go to article

Abstract

In this study, we propose a novel keyed hash algorithm based on a Boolean function and chaotic attractor. The hash algorithm called BentSign is based on two Signature attractors and XOR function and a bent Boolean function. The provided theoretical and experimental results confirm that the novel scheme can generate output hashes with a good level of security, collision resistance, and protection against most common attacks.
Go to article

Abstract

This paper presents mechanical fault detection in squirrel cage induction motors (SCIMs) by means of two recent techniques. More precisely, we have analyzed the rolling element bearing (REB) faults in SCIM. Rolling element bearing faults constitute a major problem among different faults which cause catastrophic damage to rotating machinery. Thus early detection of REB faults in SCIMs is of crucial importance. Vibration analysis is among the key concepts for mechanical vibrations of rotating electrical machines. Today, there is massive competition between researchers in the diagnosis field. They all have as their aim to replace the vibration analysis technique. Among them, stator current analysis has become one of the most important subjects in the fault detection field. Motor current signature analysis (MCSA) has become popular for detection and localization of numerous faults. It is generally based on fast Fourier transform (FFT) of the stator current signal. We have detailed the analysis by means of MCSA-FFT, which is based on the stator current spectrum. Another goal in this work is the use of the discrete wavelet transform (DWT) technique in order to detect REB faults. In addition, a new indicator based on the MCSA-DWT technique has been developed in this study. This new indicator has the advantage of expressing itself in the quantity and quality form. The acquisition data are presented and a comparative study is carried out between these recent techniques in order to ensure a final decision. The proposed subject is examined experimentally using a 3 kW squirrel cage induction motor test bed.
Go to article

Abstract

The paper presents an induction generator connected to the power grid using the AC/DC/AC converter and LCL coupling filter. In the converter, both from the generator and the power grid side, three-level inverters were used. The algorithm realizing pulse width modulation (PWM) in inverters has been simplified to the maximum. Control of the induction generator was based on the indirect field oriented control (IFOC) method. At the same time, voltage control has been used for this solution. The MPPT algorithm has been extended to the variable pitch range of the wind turbine blades. The active voltage balancing circuit has been used in the inverter DC voltage circuit. Synchronization of control from the power grid side is ensured by the use of a PLL loop with the system of preliminary suppression of undesired harmonics (CDSC).
Go to article

Abstract

A sliding mode controller for the photovoltaic pumping system has been proposed in this paper. This system is composed of a photovoltaic generator supplying a three-phase permanent magnet synchronous motor coupled to a centrifugal pump through a three-phase voltage inverter. The objective of this study is to minimise the number of regulators and apply the sliding mode control by exploiting the specification of the field oriented control scheme (FOC). The first regulator is used to force the photovoltaic generator to operate at the maximum power point, while the second is used to provide the field oriented control to improve the system performance.The whole system is analysed and its mathematical model is done. Matlab is used to validate the performance and robustness of the proposed control strategy.
Go to article

Abstract

This paper presents results of evolutionary minimisation of peak-to-peak value of a multi-tone signal. The signal is the sum of multiple tones (channels) with constant amplitudes and frequencies combined with variable phases. An exemplary application is emergency broadcasting using widely used analogue broadcasting techniques: citizens band (CB) or VHF FM commercial broadcasting. The work presented illustrates a relatively simple problem, which, however, is characterised by large combinatorial complexity, so direct (exhaustive) search becomes completely impractical. The process of minimisation is based on genetic algorithm (GA), which proves its usability for given problem. The final result is a significant reduction of peak-to-peak level of given multi-tone signal, demonstrated by three real-life examples.
Go to article

Abstract

Two methods for calculating transport parameters in semiconductor superlattices by applying Green’s functions are compared in the paper. For one of the methods, the Wannier functions method, where computations in the complex space and Wannier functions base are required, the Hamiltonian matrix is small in size and its elements depend solely on the energy. For the real space method, as it operates in the floating point domain and uses the Hamiltonian containing the elements dependent both on energy and position, the Hamiltonian matrix is larger in size. The size makes the method computationally challenging. To find the consequences of choosing one of the methods, a direct comparison between the computations, obtained for both methods with the same input parameters, was undertaken. The differences between the results are shown and explained. Selected simulations allowed us to discuss advantages and disadvantages of both methods. The calculations include transport parameters such as the density of states and the occupation functions, with regard to scattering processes where the self-consistent Born approximation was used, as well as the spatial distribution of electron concentration for two superlattices structures. The numerical results are obtained within the non-equilibrium Green’s functions formalism by solving the Dyson and the Keldysh equations.
Go to article

Abstract

The aeronautical industry is a sector constantly looking for new materials and equipment because of its tendency to expand quickly. The Ti6Al4V titanium alloy is used frequently in the aeronautic, aerospace, automobile, chemical and medical industry because it presents high strength combined with low density (approximately 4.5 g/cm3), good creep resistance (up to 550°C), excellent corrosion resistance, high flexibility, good fatigue and biocompatibility. As a result of these properties, this titanium alloy is considered an excellent material for manufacturing structural parts in the aircraft industry for modern aeronautic structures, especially for airframes and aero-engines. But its use is also problematic because the Ti6Al4V titanium alloy manifests hydrogen embrittlement, by means of hydrides precipitation in the metal. The Ti6Al4V alloy becomes brittle and fractures because of hydrogen diffusion into metal and because titanium hydrides appear and create pressure from within the metal, thus generating corrosion. Because of titanium hydrides, the titanium alloy suffers from reduced ductility, tensile strength and toughness, which can result in fractures of aeronautical parts. This poses a very serious problem for aircrafts. In this paper, rapid hydrogen embrittlement is presented along with XRD, SEM and TEM analysis. Its goal is to detect the presence of titanium hydrides and to spot the initial cracks in the metallic material.
Go to article

Abstract

Results of the ab initio molecular dynamics calculations of silicon crystals are presented by means of analysis of the velocity autocorrelation function and determination of mean phonon relaxation time. The mean phonon relaxation time is crucial for prediction of the phonon-associated coefficient of thermal conductivity of materials. A clear correlation between the velocity autocorrelation function relaxation time and the coefficient of thermal diffusivity has been found. The analysis of the results obtained has indicated a decrease of the velocity autocorrelation function relaxation time t with increase of temperature. The method proposed may be used to estimate the coefficient of ther-mal diffusivity and thermal conductivity of the materials based on silicon and of other wide-bandgap semiconductors. The correlation between kinetic energy fluctuations and relaxation time of the velocity autocorrelation function has been calculated with the relatively high coefficient of determination R2 = 0.9396. The correlation obtained and the corresponding approach substantiate the use of kinetic energy fluctuations for the calculation of values related to heat conductivity in silicon-based semiconductors (coefficients of thermal conductivity and diffusivity).
Go to article

Abstract

The main objective of this work was to present a successful stabilization action of a building structure in an active landslide. Firstly, history of the case and a FEM simulation explaining ensuing situation are presented. Then different structural measures to stabilize the whole system are discussed. The structural solution of the problem (pile system reaching solid rocky zone) is presented in more detailed way. The estimation of forces acting on the structure, caused by an unstable soil mass, being crucial for the design of stabilizing structure is described.
Go to article

Abstract

In this study, the concepts of simultaneous user association and resource allocation in non-orthogonal multiple access systems have been investigated. Subscribers are randomly distributed in them. In the paper, a novel cooperative energy harvesting model is introduced so that user equipment near to the base stations acts as relay for further subscribers. In order to consider the local limitations of alternative energy resources, it was assumed that alternative energy would be shared among the base stations by means of the dynamic grid network. In this architecture, non-orthogonal resource allocation and user association frameworks should be reconfigured because conventional schemes use orthogonal multiple access. Hence, this paper suggests a novel approach to joint optimum cooperative power allocation and user association techniques to achieve a maximum degree of energy efficiency for the whole system in which the quality of experience parameters are assumed to be bounded during multi-cell multicast sessions. The model was also modified to develop joint multi-layered resource control and user association that can distinguish the service pattern in cooperative energy heterogeneous systems with non-orthogonal multiple access to obtain more resource optimality than in the current approaches. The effectiveness of the suggested approach is confirmed by numerical results. Also, the results reveal that non-orthogonal multiple access can provide greater energy efficiency than the conventional orthogonal multiple access approaches such as e.g. the MAX-SINR scheme.
Go to article

Abstract

The positivity of fractional descriptor linear continuous-time systems is investigated. The solution to the state equation of the systems is derived. Necessary and sufficient conditions for the positivity of fractional descriptor linear continuous-time systems are established. The considerations are illustrated by numerical examples.
Go to article

Abstract

This study presents cause-effect dependencies between inputs and outputs of business transitions that are software objects designed for processing information-decision state variables in integrated enterprise process control (EntPC) systems. Business transitions are elementary components of controlling units in enterprise processes that have been defined as self-controlling, generalized business processes, which may serve not only as business processes but also as business systems or their roles. Business events, which have zero durations by definition, are interpreted as executions of business actions that are main operations of business transitions. Any ordered set of business actions, performed in the controlling unit of a given enterprise process and attributed to the same discrete-time instant, is referred to as ‘the information-decision process’. The i-d processes may be substituted by managerial business processes, performed on the lower organizational level, where durations of activity executions are greater than zero, but discrete-time periods are considerably shorter. In such a case, procedures of business actions are performed by corresponding activities of managerial processes, but on the level of business transitions the durations of their executions are imperceptible, and many different business events may occur at the same discrete-time instant. It has been demonstrated in the paper how to control business actions to ensure that a given i-d state variable may not change more than once at a given instant. Furthermore, the rules of designing the i-d process structures, which prevent random changes of transitory states, have been presented.
Go to article

Abstract

The optimal design of excitation signal is a procedure of generating an informative input signal to extract the model parameters with maximum pertinence during the identification process. The fractional calculus provides many new possibilities for system modeling based on the definition of a derivative of noninteger-order. A novel optimal input design methodology for fractional-order systems identification is presented in the paper. The Oustaloup recursive approximation (ORA) method is used to obtain the fractional-order differentiation in an integer order state-space representation. Then, the presented methodology is utilized to solve optimal input design problem for fractional-order system identification. The fundamental objective of this approach is to design an input signal that yields maximum information on the value of the fractional-order model parameters to be estimated. The method described in this paper was verified using a numerical example, and the computational results were discussed.
Go to article

Abstract

The goal of this paper is to explore and to provide tools for the investigation of the problems of unit-length scheduling of incompatible jobs on uniform machines. We present two new algorithms that are a significant improvement over the known algorithms. The first one is Algorithm 2 which is 2-approximate for the problem Qm|pj  = 1, G = bisubquartic|Cmax. The second one is Algorithm 3 which is 4-approximate for the problem Qm|pj  = 1, G = bisubquartic|ΣCj, where m ∈ {2, 3, 4}. The theory behind the proposed algorithms is based on the properties of 2-coloring with maximal coloring width, and on the properties of ideal machine, an abstract machine that we introduce in this paper.
Go to article

Abstract

The article refers to the idea of using the software defined network (SDN) as an effective hardware and software platform enabling the creation and dynamic management of distributed ICT infrastructure supporting the rapid prototyping process. The authors proposed a new layered reference model remote distributed rapid prototyping that allows the development of heterogeneous, open systems of rapid prototyping in a distributed environment. Next, the implementation of this model was presented in which the functioning of the bottom layers of the model is based on the SDN architecture. Laboratory tests were carried out for this implementation which allowed to verify the proposed model in the real environment, as well as determine its potential and possibilities for further development. Thus, the approach described in the paper may contribute to the development and improvement of the efficiency of rapid prototyping processes which individual components are located in remote industrial, research and development units. Thanks to this, it will be possible to better integrate production processes as well as optimize the costs associated with prototyping. The proposed solution is also a response in this regard to the needs of industry 4.0 in the area of creating scalable, controllable and reliable platforms.
Go to article

Abstract

The paper presents a tool for accurate evaluation of high field concentrations near singular lines, such as contours of cracks, notches and grains intersections, in 3D problems solved the BEM. Two types of boundary elements, accounting for singularities, are considered: (i) edge elements, which adjoin a singular line, and (ii) intermediate elements, which while not adjoining the line, are still under strong influence of the singularity. An efficient method to evaluate the influence coefficients and the field intensity factors is suggested for the both types of the elements. The method avoids time expensive numerical evaluation of singular and hypersingular integrals over the element surface by reduction to 1D integrals. The method being general, its details are explained by considering a representative examples for elasticity problems for a piece-wise homogeneous medium with cracks, inclusions and pores. Numerical examples for plane elements illustrate the exposition. The method can be extended for curvilinear elements.
Go to article

Abstract

The global (absolute) stability of nonlinear systems with negative feedbacks and positive descriptor linear parts is addressed. Transfer matrices of positive descriptor linear systems are analyzed. The characteristics u = f(e) of the nonlinear parts satisfy the condition k₁e  ≤ f(e) ≤ k₂e for some positive k₁, k₂. It is shown that the nonlinear feedback systems are globally asymptotically stable if the Nyquist plots of the positive descriptor linear parts are located in the right-hand side of the circles (–¹/k₁,  –¹/k₂).
Go to article

Abstract

A fractional-order control strategy for a pneumatic position servo-system is presented in this paper. The idea of the fractional calculus application to control theory was introduced in many works, and its advantages were proved. This paper deals with the design of fractional order PIλDµ controllers, in which the orders of the integral and derivative parts, λ and µ, respectively, are fractional. Experiments with fractional-order controller are performed under various conditions, which include position signal with different frequencies and amplitudes or a step position signal. The results show the effectiveness of the proposed schemes and verify their fine control performance for a pneumatic position servo-system.
Go to article

Abstract

This paper adopts a fractional calculus perspective to describe a non-linear electrical inductor. First, the electrical impedance spectroscopy technique is used for measuring the impedance of the device. Second, the experimental data is approximated by means of fractional-order models. The results demonstrate that the proposed approach represents the inductor using a limited number of parameters, while highlighting its most relevant characteristics.
Go to article

This page uses 'cookies'. Learn more