Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 213
items per page: 25 50 75
Sort by:

Abstract

The work presents the results of the investigations of the effect of inhibitors coated on the internal walls of a ceramic mould on the quality of the obtained casts made of the AM60 alloy containing additions of chromium and vanadium. In order to reduce the reactivity of magnesium alloy cast by the technology of investment casting with the material of the mould and the ambient atmosphere, solid inhibitors were applied in the form of a mixture of KBF4 and H3BO3 after the stage of mould baking and before the mould’s being filled with the liquid alloy. For the purpose of examining the effect of the inhibitors on the surface quality of the obtained casts, profilometric tests were performed and the basic parameters describing the surface roughness, Ra, Rz and Rm, were determined.
Go to article

Abstract

The herein paper contains the results of investigations on a new type of cellulose blend used for the manufacture of profiles applied in the process of making gating systems in the foundry industry. A standard cellulose profile was subjected to an experiment. During the experiment the profile was filled with a liquid cast iron and at the same time the temperatures of the liquid metal crystallizing inside the profile were measured as well as the temperature of the outer layer of the profile was controlled. Further, the microstructure of the cast iron, which crystallized out inside the cellulose profile, was analysed and the cellulose, thermally degraded after the experiment, was verified with the use of the chemical analysis method. Moreover, a quality analysis of the original as well as the degraded cellulose profile was run with the use of the FTIR infrared spectroscopy. The presented results revealed that the cellulose blend is aluminium silicate enriched and contains organic binder additives. The cast iron, which crystallized out, tended to have an equilibrium pearlitic structure with the release of graphite and carbides. The generation of disequilibrium ausferrite phases was also observed in the structure.
Go to article

Abstract

A measuring system was developed for the measurement of ejector forces in the die casting process. When selecting the sensor technology, particular care was taken to ensure that measurements can be taken with a high sampling rate so that the fast-running ejection process can be recorded. For this reason, the system uses piezoelectric force sensors which measure the forces directly at the individual ejector pins. In this way, depending on the number of sensors, it is possible to determine both the individual ejector forces and the total ejector force. The system is expandable and adaptable with regard to the number and position of the sensors and can also be applied to real HPDC components. Automatic triggering of the measurements is also possible. In addition to the measuring system, a device and a method for in-situ calibration of the sensors have also been developed. To test the measuring system, casting experiments were carried out with a real aluminium HPDC aluminium component. The experiments showed that it is possible to measure the ejector forces with sufficient sampling rate and also to observe the process steps of filling, intensification and die opening by means of ejector forces. Experimental setup serves as a basis for future investigations regarding the influencing parameters on the ejection process.
Go to article

Abstract

The paper deals with problem of optimal used automatic workplace for HPDC technology - mainly from aspects of operations sequence, efficiency of work cycle and planning of using and servicing of HPDC casting machine. Presented are possible ways to analyse automatic units for HPDC. The experimental part was focused on the rationalization of the current work cycle time for die casting of aluminium alloy. The working place was described in detail in the project. The measurements were carried out in detail with the help of charts and graphs mapped cycle of casting workplace. Other parameters and settings have been identified. The proposals for improvements were made after the first measurements and these improvements were subsequently verified. The main actions were mainly software modifications of casting center. It is for the reason that today's sophisticated workplaces have the option of a relatively wide range of modifications without any physical harm to machines themselves. It is possible to change settings or unlock some unsatisfactory parameters.
Go to article

Abstract

For the die casting conditions of aluminium bronzes assumed based on the literature data, a thick-walled bush was cast, made of complex aluminium bronze (Cu-Al-Fe-Ni-Cr). After the cast was removed from the mould, cracks were observed inside it. In order to identify the stage in the technological production process at which, potentially, the formation of stresses damaging the continuity of the microstructure created in the cast was possible (hot cracking and/or cold cracking), a computer simulation was performed. The article presents the results of the computer simulation of the process of casting the material into the gravity die as well as solidifying and cooling of the cast in the shape of a thick-walled bush. The simulation was performed with the use of the MAGMA5 program and by application of the CuAl10Ni5,5Fe4,5 alloy from the MAGMA5 program database. The results were compared with the location of the defects identified in the actual cast. As a result of the simulation of the die-casting process of this bush, potential regions were identified where significant principal stresses accumulate, which can cause local hot and cold cracking. Until now, no research has been made of die-cast aluminium bronzes with a Cr addition. Correlating the results of the computer simulation validated by the analysis of the actual cast made it possible to clearly determine the critical regions in the cast exposed to cracking and point to the causes of its occurrence. Proposals of changes in the bush die casting process were elaborated, in order to avoid hot tearing and cold cracking. The article discusses the results of preliminary tests being a prologue to the optimization of the die-casting process parameters of complex aluminium bronze thick-walled bushs.
Go to article

Abstract

Development of open cellular metal foam technology based on investment casting applying the polyurethane pattern is discussed. Technological process comprises preparing of the ceramic mold applying PUR foam as the pattern, firing of the mold, pouring of the liquid Zn-Al alloy into the mold and washing out of the ceramic material from cellular casting. Critical parameters such as the temperature of mold and poured metal, design of gating system affected by metalostatic pressure allowed to produce castings with cellular structure characterized by the open porosity. Metal cellular foams with the open porosity embedded in phase change material (PCM) enhance heat transfer and reduce time operations in energy storage systems. Charging and discharging were performed at the laboratory accumulator by heating and cooling with flowing water characterized by the temperatures of 97-100oC. Temperature measurements were collected from 7 different thermocouples located in the accumulator. In relation to the tests with pure paraffin, embedding of the metal Zn-Al cellular foam in paraffin significantly decreases temperature gradients and melting time of paraffin applied as PCM characterized by the low thermal conductivity. Similarly, reduction of discharging time by this method improves the efficiency of thermal energy storage system applied in solar power plants or for the systems of energy efficient buildings.
Go to article

Abstract

The possibility of controlling the solidification and cooling time of castings creates prospects of improving their structure and by the same their properties. Thermal properties of the mould constitute therefore an important factor which is necessary to consider while seeking for the mentioned improvement. The presented work illustrates the method of determining some basic thermal coefficients of moulding material, i.e. the coefficient of temperature equalisation a2, known also as the temperature diffusivity, and the heat accumulation coefficient b2, which characterises the ability of moulding material to draw away the heat from a casting. The method consists in experimental determining the temperature field within the mould during the processes of pouring, solidification and cooling of the casting. The performed measurements allow for convenient and exact calculations of the sought-after coefficients. Examinations were performed for the oil bonded moulding sand of trade name OBB SAND ‘E’. The experiment showed that the obtained value of b2 coefficient differs from the value calculated on the basis of theoretical considerations available in publications. Therefore it can be stated that theoretical calculations of the heat accumulation coefficient are thus far not sufficient and not quite reliable, so that these calculations should be verified experimentally.
Go to article

Abstract

The presented work is aimed to deal with the influence of changes in the value of negative (relative) pressure maintained in the die cavity of pressure die casting machine on the surface quality of pressure castings. The examinations were held by means of the modified Vertacast pressure die casting machine equipped with a vacuum system. Castings were produced for the parameters selected on the basis of previous experiments, i.e. for the plunger velocity in the second stage of injection at the level of 4 m/s, the pouring temperature of the alloy equal to 640°C, and the die temperature of 150°C. The examinations were carried on for three selected values of negative gauge pressure: - 0.03, - 0.05, and - 0.07 MPa. The quality of casting was evaluated by comparing the results of the surface roughness measurements performed for randomly selected castings. The surface roughness was measured by means of Hommel Tester T1000. After a series of measurements it was found that the smoothest surface is exhibited by castings produced at negative gauge pressure value of - 0.07 MPa.
Go to article

Abstract

The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Go to article

Abstract

The paper presents the results concerning impact of modification (volume and surface techniques), pouring temperature and mould temperature on stereological parameters of macrostructure in IN713C castings made using post-production scrap. The ability to adjust the grain size is one of the main issues in the manufacturing of different nickel superalloy castings used in aircraft engines. By increasing the grain size one can increase the mechanical properties, like diffusion creep resistance, in higher temperatures. The fine grained castings. on the other hand, have higher mechanical properties in lower temperatures and higher resistance to thermal fatigue. The test moulds used in this study, supplied by Pratt and Whitney Rzeszow, are ordinarily used to cast the samples for tensile stress testing. Volume modification was carried out using the patented filter containing cobalt aluminate. The macrostructure was described using the number of grains per mm2 , mean grain surface area and shape index. Obtained results show strong relationship between the modification technique, pouring temperature and grain size. There was no significant impact of mould temperature on macrostructure.
Go to article

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.
Go to article

Abstract

Ensuring the required quality of castings is an important part of the production process. The quality control should be carried out in a fast and accurate way. These requirements can be met by the use of an optical measuring system installed on the arm of an industrial robot. In the article a methodology for assessing the quality of robotic measurement system to control certain feature of the casting, based on the analysis of repeatability and reproducibility is presented. It was shown that industrial robots equipped with optical measuring systems have the accuracy allowing their use in the process of dimensional control of castings manufactured by lost-wax process, permanent-mould casting, and pressure die-casting.
Go to article

Abstract

Article present various forms of transfer of information available on the Internet. An attempt was made to show the possibility of such a selection of the knowledge sources that, taking into account user preferences, would arouse his interest, showing in parallel the intended substantive content. This commitment is shown in the context of the current assumptions of building a platform dedicated to support the needs of production processes in foundry and metallurgy.
Go to article

This page uses 'cookies'. Learn more