Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 102
items per page: 25 50 75
Sort by:

Abstract

This paper presents a development of a model of a set of multistage centrifugal electro pumps including two 4 stage stainless steel centrifugal pumps, each coupled to a 4 kW three-phase induction motor, connected to a hydraulic application running under two control strategies including constant speed and variable speed methods. Each pump provides 16 m3/hr flow rate and 58mwaterhead at BEP (Best Efficiency Point). Dynamicity of the model causes variations in all operational parameters of pumping system in any variation on consuming flow rate. Each electro pump has been driven with a variable frequency drive utilizing frequency control method for adjusting the rotational speed under a PID control regarding to match of pumping system operational point with the consumption point to save the energy. 83% energy saving is achieved by model in variable speed control strategy comparing to constant speed control strategy. MATLAB/SIMULINK software using ode45 solver and variable step size simulates this model.
Go to article

Abstract

This article describes the influence of thermal and dielectric properties of materials to properties of electrical insulating systems in high voltage electrical equipment. The aim of this experiment is to improve the thermal and dielectric properties of electrical insulating (composite) materials using micro fillers of aluminium oxide Al2O3. Supplement of fillers of aluminium oxide with better thermal conductivity to the electrical insulating systems can be modified to increase their thermal conductivity. Improving the thermal conductivity of electric insulation by addition of micro- or nanofillers and in the same time not adversely affecting the dielectric properties is the objective of the study. Paper is presenting the results measured on prepared samples. Improved thermal conductivity is compared with other dielectric properties as: dissipation factor temperature dependences, resistivity and dielectric spectroscopy. To determine the dielectric insulating properties the following characteristics were measured: tanδ versus temperature from 110°C to 150°C, absorption and resorption currents, volume resistivity. Furthermore, this article describes analysis of moisture and conductivity the material by dielectric spectroscopy.
Go to article

Abstract

Although the gas insulated structures have a high degree of reliability, the unavoidable defects are primary reason of their failures. Partial discharge (PD) has been regarded as an effective indication for condition monitoring and diagnosis of gas insulated switchgears (GISs) to ensure their reliable and stable operation. Among various PD detection methods, the ultra-high frequency (UHF) technique has the advantages of on-line motoring and defect classification. In this paper, there are presented 7 types of artificial electrode systems fabricated for simulation of real insulation defects in gas insulated structures. A real-time measurement system was developed to acquire defect patterns in a form of phase-resolve partial discharge (PRPD) intensity graph, using a UHF sensor. Further, the discharge distribution and statistical characteristics were extracted for defect identification using a neural network algorithm. In addition, a conversion experiment was proposed by detecting the PD pulse simultaneously using a non-induction resistor and a UHF sensor. A relationship between the magnitude of UHF signal and the amplitude of apparent charge was established, which was used for evaluation of PD using the UHF sensor.
Go to article

Abstract

A pulse sequence shaper for the pursuance of the research using a wide spectrum of radiospectroscopy and relaxation methods in NQR is proposed. The distinctive feature of this product is its implementation with the application of a multi-functional programmable frequency synthesizer suitable for high-speed amplitude and phase manipulations.
Go to article

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.
Go to article

Abstract

A new configuration of rectifier suiting CMOS technology is presented. The rectifier consists of only two n-channel MOS transistors, two capacitors and two resistors; for this reason it is very favourable in manufacturing in CMOS technology. With these features the rectifier is easy to design and cheap in production. Despite its simplicity, the rectifier has relatively good characteristics, the voltage and power efficiency, and bandwidth greater than 89%, 87%, and 1 GHz, respectively. The performed simulations and measurements of a prototype circuit fully confirmed its correct operation and advantages.
Go to article

Abstract

The paper presents theoretical and experimental analyses of a possible effect of the short-circuit forces on the transformer winding. The first part of the paper is focused on creation and activity of the radial and axial forces during a short circuit. It shows dimensions, direction and − of course − the resulting mechanical stress. The presented equation shows basic dependencies of these mechanical forces created in the transformer winding. Finally, the paper presents experimental methods of diagnosing and analysing the effects of short-circuit forces on the transformer winding.
Go to article

Abstract

This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR) and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS) fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB). The simulation results show that the root mean square error (RMSE) of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.
Go to article

Abstract

Based on real-time multi-domain communication signal analysis architecture, a high-efficiency blind carrier frequency estimation algorithm using the power spectrum symmetry of the measured modulated signal is presented. The proposed algorithm, which utilizes the moving averaged power spectrum achieved by the realtime spectrum analysis, iteratively identifies the carrier frequency in according to the power difference between the upper sideband and lower sideband, which is defined and revised by the estimated carrier frequency in each iteration. When the power difference of the two sidebands converges to the preset threshold, the carrier frequency can be obtained. For the modulation analysis, the measured signal can be coarsely compensated by the estimated result, and the residual carrier frequency error is eliminated by a following carrier synchronization loop. Compared with previous works, owing to the moving averaged power spectrum normalization and the smart iterative step variation mechanism for the two sidebands definition, the carrier frequency estimation accuracy and speed can be significantly improved without increasing the computational effort. Experimental results are included to demonstrate the outstanding performance of the proposed algorithm.
Go to article

Abstract

Studies of noise properties of thick-film conducting lines from Au or PdAg conductive pastes on LTCC or alumina substrates are reported. Experiments have been carried out at the room temperature on samples prepared in the form of meanders by traditional screen-printing or laser-shaping technique. Due to a low resistance of the devices under test (DUTs), low-frequency noise spectra have been measured for the dc-biased samples arranged in a bridge configuration, transformer-coupled to a low-noise amplifier. The detailed analysis of noise sources in the signal path and its transfer function, including the transformer, has been carried out, and a procedure for measurement setup self-calibration has been described. The 1/f noise component originating from resistance fluctuations has been found to be dominant in all DUTs. The analysis of experimental data leads to the conclusion that noise is produced in the bends of meanders rather than in their straight segments. It occurs that noise of Au-based laser-shaped lines is significantly smaller than screen-printed ones. PdAg lines have been found more resistive but simultaneously less noisy than Au-based lines.
Go to article

Abstract

An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.
Go to article

Abstract

In this paper a new pitch shifter using a complex instantaneous frequency rescaler and direct digital synthesizer is presented aimed at an application in a handset calling signal composer. The pitch shifter introduced here exhibits an excellent performance as a generator of different melodies, where the sound of each note in a melody, e.g., imitating a popular hit, is derived from a short recording of a voice of a chosen creature via complex dynamic representation processing.
Go to article

Abstract

A lot of methods for sensorless drive control have been published last years for synchronous and asynchronous machines. One of the approaches uses high frequency carrier injection for position control. The injected high frequency signal is controlled to remain in alignment with the saliency produced by the saturation of the main flux. Due to the fact that it does not use the fundamental machine model which fails at standstill of the magnetic field it is possible to control the drive even at zero speed. In spite of this obvious advantage industry does not apply sensorless control in their products. This is due to the dependency of many published methods on physical parameters of the machine. The high frequency carrier injection method, presented in this paper, does not need to have exact machine parameters and it can be used for machines where there is only a very small rotor anisotropy like in Surface Mounted Permanent Magnet Synchronous Machines (SMPMSM) [1]. Standard drives usually are supplied by a 6-pulse diode rectifier. Due to new European directives concerning the harmonic content in the mains it is expected that the use of controlled pulse-width modulated PWM rectifiers will be enforced in the future [2]. An important advantage of this type of rectifiers is the regeneration of the energy back to the grid. Another benefit are low harmonics in comparison to diode rectifiers. Using one of many control methods published so far it is also possible to achieve almost unity power factor. However, in these methods voltage sensors are necessary to synchronize PWM rectifiers with the mains. Therefore they are not very popular in the industry with respect to the cost and the lack of reliability. Recently a control method was proposed which is based on a tracking scheme. It does not need any voltage sensor on the ac-side of the rectifier and it does not need to know accurate parameters of the system. This paper presents the control solution for a cheap, industry friendly (no additional hardware and installation effort) drive system. The phase tracking method for control of electrical drive and PWM rectifier is described. Encouraging experimental results are shown.
Go to article

Abstract

The paper presents the theoretical background, computer model, laboratory measurements and SPICE simulation results of a 323 W, 1 MHz Class E inverter operating with an efficiency of 97%. The inverter is built around a CoolMOS transistor from Infineon Technologies. The transistor belongs to a new generation of high quality, optimized for low conduction losses and high speed switching power MOSFET-s. The presented computer model of Class E inverter is based on a state-space description and allows computing the inverter parameters for the optimum operation. Its validity has been confirmed experimentally. The SPICE simulation of the inverter has been also carried out in order to obtain better agreement between measurement and calculation results.
Go to article

Abstract

Focus of the vibration expert community shifts more and more towards diagnosing machines subjected to varying rotational speeds and loads. Such machines require order analysis for proper fault detection and identification. In many cases phase markers (tachometers, encoders, etc) are used to help performing the resampling of the vibration signals to remove the speed fluctuations and smearing from the spectrum (order tracking). However, not all machines have the facility to install speed tracking sensors, due to design or cost reasons, and the signal itself has to then be used to extract this information. This paper is focused on the problem of speed tracking in wind turbines, which represent typical situations for speed and load variation. The basic design of a wind turbine is presented. Two main types of speed control i.e. stall and pitch control are presented,. The authors have investigated two methods of speed tracking, using information from the signal (without relying on a speed signal). One method is based on extracting a reference signal to use as a tachometer, while the other is phase-based (phase demodulation). Both methods are presented and applied to the vibration data from real wind turbines. The results are compared with each other and with the actual speed data.
Go to article

Abstract

Condition monitoring of machines working under non-stationary operations is one of the most challenging problems in maintenance. A wind turbine is an example of such class of machines. One of effective approaches may be to identify operating conditions and investigate their influence on used diagnostic features. Commonly used methods based on measurement of electric current, rotational speed, power and other process variables require additional equipment (sensors, acquisition cards) and software. It is proposed to use advanced signal processing techniques for instantaneous shaft speed recovery from a vibration signal. It may be used instead of extra channels or in parallel as signal verification.
Go to article

Abstract

This electronic paper presents an innovative technology for efficient use of the radio spectrum. This new frequency reconfigurable rotatable antenna is intended for wireless applications such as WLAN, WiMAX and Bluetooth mobile applications. The working principle of this proposed work is to print square patches mounted on the same circular dielectric substrate feed by a proximity coupling to eliminate the noise signal transmission and problems related to interference. The three positions correspond to an operating frequency controlled by a bipolar step-by-step engine. An optimization of the structure using the FEM finite element method as well as a comparison with other structures recently realized are detailed in this paper. The final numerical simulation results are: WLAN 4.95-5.53 GHz (BW = 11%) Gain = 6.06 dBi, WiMAX 3.35-3.75 GHz (BW = 11.2%) Gain = 7.48 dBi and Bluetooth 2.3-2.51 GHz (BW = 8.7%) Gain = 17.78 dBi.
Go to article

Abstract

This work presents the results of numerical modeling of Karman vortex street generation performed with ANSYS/FLUENT package application. The influence of the mechanical elements located downstream of the bluff body on the vortex frequency has been found during earlier laboratory investigations. Five various geometrical configurations have been tested. Considerable differences in pictures of distributions of pressure, horizontal and vertical velocities have appeared for various configurations. Qualitative as well as quantitative results are presented in the paper. They confirm the significant dependence of the Karman vortex street parameters on the meter configuration.
Go to article

Abstract

Current methods of fault diagnosis for the grounding grid using DC or AC are limited in accuracy and cannot be used to identify the locations of the faults. In this study, a new method of fault diagnosis for substation grounding grids is proposed using a square-wave. A frequency model of the grounding system is constructed by analyzing the frequency characteristics of the soil and the grounding conductors into which two different frequency square-wave sources are injected. By analyzing and comparing the corresponding information of the surface potentials of the output signals, the faults of the grounding grid can be diagnosed and located. Our method is verified by software simulation, scale model experiments and field experiments.
Go to article

Abstract

In this study, it was achieved by using the method of impulse noise to detect internal or surface cracks that can occur in the production of ceramic plates. Ceramic materials are often used in the industry, especially as kitchenware and in areas such as the construction sector. Many different methods are used in the quality assurance processes of ceramic materials. In this study, the impact noise method was examined. This method is a test technique that was not used in applications. The method is presented as an examination technique based on whether there is a deformation on the material according to the sound coming from it as a result of a plastic bit hammer impact on the ceramic material. The application of the study was performed on plates made of ceramic materials. Here, it was made with the same type of model plates manufactured from the same material. The noise that would occur as a result of the impact applied on a point determined on the materials to be tested has been examined by the method of time-frequency analysis. The method applied gives pretty good results for distinguishing ceramic plates in good condition from those which are cracked.
Go to article

Abstract

Recently a new technology of piezoelectric transducers based on PZT thick film has been developed as a response to a call for devices working at higher frequencies suitable for production in large numbers at low cost. Eight PZT thick film based focused transducers with resonant frequency close to 40 MHz were fabricated and experimentally investigated. The PZT thick films were deposited on acoustically engineered ceramic substrates by pad printing. Considering high frequency and non-linear propagation it has been decided to evaluate the axial pressure field emitted (and reflected by thick metal plate) by each of concave transducer differing in radius of curvature - 11 mm, 12 mm, 15 mm, 16 mm. All transducers were activated using AVTEC AVG-3A-PS transmitter and Ritec diplexer connected directly to Agilent 54641D oscilloscope. As anticipated, in all cases the focal distance was up to 10% closer to the transducer face than the one related to the curvature radius. Axial pressure distributions were also compared to the calculated ones (with the experimentally determined boundary conditions) using the angular spectrum method including nonlinear propagation in water. The computed results are in a very good agreement with the experimental ones. The transducers were excited with Golay coded sequences at 35-40 MHz. Introducing the coded excitation allowed replacing the short-burst transmission at 20 MHz with the same peak amplitude pressure, but with almost double center frequency, resulting in considerably better axial resolution. The thick films exhibited at least 30% bandwidth broadening comparing to the standard PZ 27 transducer, resulting in an increase in matching filtering output by a factor of 1.4-1.5 and finally resulting in a SNR gain of the same order.
Go to article

Abstract

The Variable Frequency Drive (VFD) is used to control the speed of the pumpmotor to attain the desired flow rate and fluid level in a fluid system. An AC drive provides efficient flow control by varying the pump-motor speed. The comparison of energy requirements and costs in a system where a throttling device is used for flow control on a centrifugal pump with the power used when an variable frequency drive (VFD) is used to control the same flow, evidently shows potential savings. In this system, AC Motor Frequency drive and static pressure transmitter, turbine type flowmeter and Analog/Digital cards, micro-control unit and computer connection are designed specially to control flow rate, fluid flow type (turbulence or laminar) and water level at the different conditions with different PID parameters.
Go to article

Abstract

The paper focuses on the influence of the longitudinal and lateral suspension damping in correlation with the velocity upon the vibration behaviour of the railway vehicles while moving on a tangent track. The numerical simulations are developed based on a linear model of a 17-degree of freedom vehicle that allows the evaluation of the dynamic behaviour of the vehicle in a sub-critical velocity. Based on the response frequency functions of the vehicle in a harmonic and in a random behaviour, a series of basic properties of the stable behaviour of the forced lateral vibrations has been made evident, as well as the opportunities to lower the level of the carbody vibrations by changing the suspension damping.
Go to article

This page uses 'cookies'. Learn more