Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 102
items per page: 25 50 75
Sort by:

Abstract

The problem considered in the paper is motivated by production planning in a foundry equipped with the furnace and casting line, which provides a variety of castings in various grades of cast iron/steel for a large number of customers. The quantity of molten metal does not exceed the capacity of the furnace, the load is a particular type of metal from which the products are made. The goal is to create the order of the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally considered as a lot-sizing and scheduling problem. The paper describes a mathematical programming model that formally defines the optimization problem and its relaxed version that is based on the conception of rolling-horizon planning
Go to article

Abstract

In recent years, due to the growing importance of eco-design and tightening EU regulations entrepreneurs are required to implement activities related to environmental protection. It influences the development of methods and tools enabling the implementation of eco-design into practice, which are increasingly used by modern information technologies. They are based on intelligent solutions that allows them to better match the requirements of designers and allows for the automation of processes, and in some cases they are able to do the work themselves, replacing designers. Details are useful in areas that require calculations, comparisons and making choices, which is the process of eco-design. The paper describes methodology of pro-ecological product design oriented towards recycling, based on agent technology, enables the design of environmentally friendly products including recycling. The description of the methodology was preceded by a literature analysis on the characteristics of tools supporting eco-design and the process of its development was presented. The proposed methodology can be used at the design stage of devices to select the best product in terms of ecology. It is based on the original set of recycling indicators, used to evaluate the recycling of the product, ensure the ability to operate in a distributed design environment, and the use of data from various CAD systems, allows full automation of calculations and updates (without user participation).
Go to article

Abstract

Access to up-to-date information on technology, innovation, source publications, and the materials and services offered in a particular industry is very important for both industrial plants and departmental research centres. It should be noted that obtaining such information using publicly available search engines such as Google, Yahoo!, Bing, Bindu (mainly used in China) is only apparently easy because, due to their versatility, they deliver results with great redundancy. This leads to the need to analyze large data sets by linguistic methods or "manually", which is very tedious and time consuming. In this situation, it was considered reasonable to undertake studies aimed at acquiring relatively simple IT tools, i.e. crawlers, which allow their users to selectively search for information in a particular problem area, which in this particular case is casting. The intention of this work was to collect and analyze the experimental material that would allow describing the characteristics of the above solutions from the point of view of the range of their application, the quality of the results achieved, and possible limitations and preferences taking into account user needs [1, 2].
Go to article

Abstract

The paper discusses the impact of the geometry of foundry pallet components on the value of temperature gradient on the wall crosssection during heat treatment. The gradient is one of the most important factors determining the distribution of thermal stresses in these items. Analysis of quantitative simulation was carried out to detect possible effect of the type of connection between pallet walls and thickness of these walls (ribs) on the interior temperature distribution during rapid cooling. The analysis was performed for five basic designs of wall connections used in pallets. Basing on the results obtained, the conclusions were drawn on the best connection between the ribs in foundry pallets.
Go to article

Abstract

The aim of the study was to determine the applicability of a new product added to water glass-containing foundry sands hardened with ethylene glycol diacetate. The new additive designated by the symbol "B" is a composition of aqueous solutions of modified polyalcohols, improving the sand knocking out properties. The scope of studies included testing various mechanical and technological properties of foundry sand mixtures, such as permeability, friability, life cycle of cores and knocking out properties. In the technological studies, two types of water glass with different values of the silica modulus and density, designated as R145 and R150, were used. Moulding sands were prepared with the additive "B". For comparison, reference sands with water glass but without the additive "B" were also made. In Part I of the article, the results of studies of the effect of additive "B" on the properties of foundry sands with water glass hardened by CO2 blowing were discussed.
Go to article

Abstract

In earlier works were described trends in the production of tools for die casting (hot work). Almost the entire set of issues dealt with may seem insignificant when incompletely assembled acceptance of the material and the associated risks of processing a material with an inappropriate structure, leading to a very early defect of the die. Therefore, further work will focus particularly on identifying the causes of thermal cracks and preventing a suitable choice of acceptance criteria conditions and heat treatment.
Go to article

Abstract

The work presents the results of the studies of Co-Cr-Mo casting alloys used in the production of frame casts of removable dentures, crowns and bridges in dental prosthetics. The studies were performed on four Co-Cr-Mo alloys of different contents of Mo, W and other additives. Electrochemical tests were performed, which aimed at examining the corrosion resistance of the alloys and observing the alloy structure after chronoamperometric tests with the potential in the area of the occurrence of the passive layer breakpoint. The alloy microstructure images after chronoamperometric tests show the presence of non-uniformly distributed general corrosion. Moreover, a project of cobalt alloy casting was elaborated using a ceramic mold casting. Additionally, analysis of the obtained microstructure was performed. The microstructure of the examined alloys was of the dendrite type. This microstructure was chemically inhomogeneous and consisted of an austenitic matrix formed by a solid cobalt solution and chromium in the core dendritic structure.
Go to article

Abstract

The article presents an example of analysis of the influence of selected parameters deriving from data acquisition in foundries on the occurrence of Gas porosity defects (detected by Visual testing) in castings of ductile cast iron. The possibilities as well as related effectiveness of prediction of this kind of defects were assessed. The need to rationally limit the number of possible parameters affecting this kind of porosity was indicated. Authors also benefited from expert group's expertise in evaluating possible causes associated with the creation of the aforementioned defect. A ranking of these parameters was created and their impact on the occurrence of the defect was determined. The classic statistical tools were used. The possibility of unexpected links between parameters in case of uncritical use of these typical statistical tools was indicated. It was emphasized also that the acquisition realized in production conditions must be subject to a specific procedure ordering chronology and frequency of data measurements as well improving the casting quality control. Failure to meet these conditions will significantly affect the difficulties in implementing and correcting analysis results, from which INput/OUTput data is expected to be the basis for modelling for quality control.
Go to article

Abstract

In the article we described the evolution of optical technology from lens-type microscopes working in far-field to SNOM (Scanning Near-Field Optical Microscopy) constructions. We considered two systems elaborated in our laboratory, namely PSTM system (Photon Scanning Tunelling Microscope) and SNOM system. In both systems we obtained subwavelength resolution. Some details about optical point probe technology in both systems are given and experimental results presented.
Go to article

Abstract

The paper present the examination results concerning mechanical properties of castings made of AlSi7MG alloy in correlation both with the most significant squeeze casting parameters and with the modification treatment. Experiments were planned and held according to the 2 3 factorial design. The regression equations describing the influence of the squeeze pressure, the mould temperature, and the quantity of strontium modifier on the strength and elongation of the examined alloy were obtained. It was found that the main factor controlling the strength increase is the squeeze pressure, while the plasticity (A5 ) of the alloy is affected most advantageously by modification. The application of modification treatment in squeeze casting technology enables for production of the slab-type castings made of AlSi7Mg alloy exhibiting strength at the level of 230 MPa and elongation exceeding 14%.
Go to article

Abstract

The casting workshop was discovered with numerous artifacts, confirming the existence of the manufacturing process of metal ornaments using ceramic molds and investment casting technology in Lower Silesia (Poland) in 7-6 BC. The research has yielded significant technological information about the bronze casting field, especially the alloys that were used and the artifacts that were made from them. Based on the analyses, the model alloys were experimentally reconstructed. Taking advantage of the computer-modeling method, a geometric visualization of the bronze bracelets was performed; subsequently, we simulated pouring liquid metal in the ceramic molds and observed the alloy solidification. These steps made it possible to better understand the casting processes from the perspective of the mold technology as well as the melting and casting of alloys.
Go to article

Abstract

Magnesium alloys due to their low density and high strength-to-weight ratio are promising material for the automotive and aerospace industries. Many elements made from magnesium alloys are produced by means of sand casting. It is essential to investigate impact of the applied mould components on the microstructure and the quality of the castings. For the research, six identical, 100x50x20mm plates has been sand cast from the Elektron 21 magnesium casting alloy. Each casting was fed and cooled in a different way: one, surrounded by mould sand, two with cast iron chills 20mm and 40mm thick applied, another two with the same chills as well as feeders applied and one with only the feeder applied. Solid solution grain size and eutectics volume fraction were evaluated quantitatively in Met-Ilo program, casting defects were observed on the scanning electron microscope Hitachi S3400N. The finest solid solution grain was observed in the castings with only the chills applied. Non metallic inclusions were observed in each plate. The smallest shrinkage porosity was observed in the castings with the feeders applied.
Go to article

Abstract

The purpose of the study is to analyze the opportunities and the challenges associated with the adoption of Information technology in the Indian SMEs. The significant usage of Information Technology in the SME sector and the factors that influence the business are discussed. SME industry in India has shown substantial growth over the past few years. The implementation of new technologies tends to offer better opportunities to the companies particularly for SME sector in India. However, there are a few challenges associated with technology adaptation that needs attention. This research is focused on improved business quality and responsiveness towards market opportunities while using the latest technologies available. This study is based on a review of research journals and articles including news magazines concerning current SME market situation in India. The current market scenario of Indian SMEs, as well as several policy interventions and new trends in the market were discussed.
Go to article

Abstract

In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m・℃1/2・s -3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.
Go to article

Abstract

Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.
Go to article

Abstract

The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.
Go to article

Abstract

The mathematical and numerical simulation model of the liquid steel flow in a tundish is presented in this paper. The problem was treated as a complex and solved by the finite element method. The single-strand slab tundish is used to continuous casting slabs. The internal work space of the tundish was modified by the following flow control devices. The first device was a striker pad situated in the pouring tundish zone. The second device was a baffle with three holes and the third device was a baffle without hole. The main purpose of using these devices was to cause a quiet liquid mixing as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulation. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influence of the tundish modification on velocity fields in the liquid phase of steel was estimated, because these have an essential influence on high quality of a continuous steel cast slab.
Go to article

Abstract

Territorisation of Intervention and Use of Endogenic Potentials in Mazovia Development Politics. Mazovia is developing rapidly in comparison to other European regions. It is also the most competitive region in Poland. Nevertheless, it is subject to a serious development duality. The regional policy to date has not been successful in curbing the increasing intraregional disparities. The article serves to indicate possible directions of Mazovia’s development which are worthy of support and fit into the Europe 2020 development model as well as the new EU regional policy paradigm. The adaptation of intervention to the differing parts of Mazovia so as to make use and develop their various endogenic potentials seems to be the right approach to increasing the region’s competitiveness and ensuring a decent standard of life in all its parts.
Go to article

Abstract

The future of food security in Africa is being severely threatened due to an exponential increase in population, which is almost three times the increase of food production. Maize production is constrained by stem borers which cause significant yield losses. Yield losses can be further compounded by higher temperatures due to climate changes, which are expected to increase the population of maize stem borers. While several methods have been employed in stem borer management, there is still significant damage caused by maize stem borers. This necessitates better control methods including the adoption of recent biotechnological advancement in RNA interference (RNAi) technology. This review highlights evidence of an increase in the stem borer population as well as the foreseen decline in maize production worldwide due to the effects of climatic changes. Furthermore, we have drawn attention to improved methods that have been used to control stem borers in maize production as well as a reluctant acceptance of traditional biotechnology in Africa. Finally, we suggest the application of alternative RNA interference techniques to breed maize for efficient pest control in order to achieve food security, improve nutrition and promote sustainable maize production.
Go to article

Abstract

Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use som sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of a sought function, describing the field of temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool for solving problems of considered kind.
Go to article

Abstract

The paper presents results of initial research on the possibility of applying microwave radiation in an innovative process of making casting moulds from silica sand, where gypsum CaSO4∙2H2O was acting as a binding material. In the research were compared strengths and technological properties of moulding mixture subjected to: natural bonding process at ambient temperature or natural curing with additional microwave drying or heating with the use of microwaves immediately after samples were formed. Used in the research moulding sands, in which dry constituents i.e. sand matrix and gypsum were mixed in the ratio: 89/11. On the basis of the results of strength tests which were obtained by various curing methods, beneficial effect of using microwaves at 2.45 GHz for drying up was observed after 1, 2 and 5 hours since moisture sandmix was formed. Applying the microwaves for hardening just after forming the samples guarantees satisfactory results in the obtained mechanical parameters. In addition, it has been noted that, from a technological and economic point of view, drying the silica sand with gypsum binder in microwave field can be an alternative to traditional molding sand technologies.
Go to article

This page uses 'cookies'. Learn more