Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 39
items per page: 25 50 75
Sort by:

Abstract

In this study, the modification mechanism and growth process of Al3(Sc, Zr) particles in as-cast Al-Si-Mg-Cu based alloy with addition of Sc and Zr were systematically investigated. It was found that 0.57 wt-%Sc addition caused a significant refinement in the average grain size of the investigated alloy, which brought about a remarkable transformation in as-cast microstructure, from thick dendritic shape to fine equiaxed structure. A large amount of primary Al3(Sc, Zr) particles with the dimension of around 5-6 μm were also observed within the equiaxed grain. Due to the identical orientation and similar crystal structure between primary Al3(Sc, Zr) particles and α-Al matrix, the primary particles always served as heterogeneous nucleus for the α-Al matrix. In addition, these cusped cubic primary Al3(Sc, Zr) particles showed triangle, star, rhomboid morphologies are generated from sectioning the particle in (111), (100) and (110) planes, respectively. Particularly, the typical eutectic structure which contained odd number-layer (Al3(Sc, Zr)+α-Al+  +Al3(Sc, Zr)) was observed within the investigated particles.
Go to article

Abstract

Usnea aurantiaco-atra is the dominant flora around King George Island, Antarctica, whose specimens exhibited various phenotypes, even for those with the same ITS sequences in both mycobiont and photobiont. A comprehensive analysis of morphological traits of U. aurantiaco-atra including the reproductive structures, growth forms and ornamentation, cross section of the branches, and the substratum was carried out. Four arbitrary groups were identified based on their reproductive characters, but these groups cannot be distinguished from molecular phylogenetic trees based on fungal or algal ITS sequences. Further, the complicated morphological diversity of the thalli with the same ITS haplotypes in both mycobiont and photobiont suggest that some other factors in addition to the symbionts could influence the morphology of lichens. This implies that lichen is indeed a complex-mini-ecosystem rather than a dual symbiotic association of fungus and alga. Also, a lichenous fungi Phacopsis sp. was identified based on its anatomical characters and ITS sequence, which was also responsible for the black burls-like structures on U. aurantiaco-atra.
Go to article

Abstract

The technology for gob-side entry retaining in steep coal seams is still in the development stage. The analysis results of the caving structure of main roof, low influence of gateway’s stability because of long filling distance and weak dynamic effect of the gateway, and the low stress redistribution environment indicate that using this technology in steep coal seams has significant advantages. Moreover, to reinforce the waste rock and the soft floor and to better guard against the impact of the waste rock during natural filling, a rock blocking device and grouting reinforcement method were invented, and theoretical calculations result show that the blocking device has high safety factor. In addition, we also developed a set of hydraulic support devices for use in the strengthening support zone. Furthermore, because the retaining gateway was a systematic project, the selection of the size and shape of the gateway cross section and its support method during the initial driving stage is a key step. Thus, first, a section the size of bottom width and roof height of a new gateway was determined to meet any related requirements. Then, according to the cross sections of 75 statistical gateways and the support technique, it chosen a trapezoidal cross section when the dip of the coal seam is 35° < α ≤ 45°, a special and an inclined arch cross section when 45° < α ≤ 55°. Eventually, a support system of bolts and cables combined with steel mesh and steel belts was provided. The support system used optimized material and improved parameters, can enhanced the self-bearing ability of the surrounding coal and rock masses.
Go to article

Abstract

In the process of coal extraction, a fractured zone is developed in the overburden above the goaf. If the fractured zone is connected with an aquifer, then water inrush may occur. Hence, research and analysis of the height of overburden fractured zone (HOFZ) are of considerable significance. This study focuses on the HOFZ determination in deep coal mining. First, general deformation failure characteristics of overburden were discussed. Second, a new method, numerical simulation by orthogonal design(NSOD), have been proposed to determinate the HOFZ in deep coal mining. Third, the validity of NSOD is verified in the practical application, compared with empiric al formula in Chinese Regulations and in-situ test. These three methods were applied to determine the HOFZ of working face No. 111303 in No. 5 coal mine. The pre dicted HOFZ of NSOD is found to be similar to the result of the in-situ test (8.9% relative error), whereas the HOFZ calculated by the empirical formula has extremely large error (25.7% relative error). Results show that the NSOD can reliably predict the HOFZ in deep coal mining and reduce time and expenses required for in-situ test.
Go to article

Abstract

Abstract Sucrose phosphate synthase (SPS) is a key enzyme catalyzing sucrose metabolism in plants. In this study, we isolated the SPS cDNA from Saccharum spontaneum and designated as SsSPS (GenBank accession no. MF398541). The full-length of SsSPS cDNA was 4153-bp with an opening reading frame (ORF) of 3132 nucleotides, which encoded a 1043-amino acid protein. The nucleotide sequences alignment showed that it had 98%, 97% and 87% homology with S. officinarum, Setaria italica and Lolium perenne, respectively. Moreover, the SsSPS was detected to express in leaf and stem tissues of S. spontaneum and exhibited a predominant expression in the stem tissue. However, there was no significant difference in the expression level of SsSPS between young leaves and mature ones. Additionally, we generated transgenic S. spontaneum using Agrobacterium-mediated transformation. Our data will provide a valuable foundation for further study of the potential role of SPS in plants.
Go to article

Abstract

The full-length cDNA of LeTIR1 gene was isolated from tomato with EST-based in silico cloning followed by RACE amplification. LeTIR1 contained an open reading frame (ORF) 1872 bp long, encoding 624 amino acid residues. The predicted protein LeTIR1 had one F-box motif and eleven leucine-rich repeats (LRRs), all of which are highly conserved in TIR1 proteins of other plant species. Phylogenetic analysis showed that the LeTIR1 protein shared high similarity with other known TIR1 proteins. Both sequence and phylogenetic analysis suggested that LeTIR1 is a TIR1 homologue and encodes an F-box protein in tomato. Semi-quantitative RT-PCR indicated that LeTIR1 was expressed constitutively in all organs tested, with higher expression in stem than root, leaf, flower and fruit. Its expression level was positively correlated with the auxin distribution in stem or axillary shoot, and was induced by spraying exogenous IAA.
Go to article

This page uses 'cookies'. Learn more