Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The 802.11ax standard final specification is expected in 2019, however first parameters are just released. The target of the new standard is four times improvement of the average throughput within the given area. This standard is dedicated for usage in dense environment such as stadiums, means of municipal communication, conference halls and others. The main target is to support many users at the same time with the single access point. The question arises if the new standard will have higher throughput then previous ones in the single user mode. The author calculated the maximal theoretical throughput of the 802.11ax standard and compared the results with the throughput of older 802.11 standards such as 802.11n and 802.11ac. The new he-wifi-network example included in the ns-3.27 release of the NS-3 simulator was used to simulate the throughput between the access point and the user terminal. The results indicate that in some conditions the 802.11ac standard has higher throughput than the new 802.11ax standard.
Go to article

Abstract

Cloud radio access network (C-RAN) has been proposed as a solution to reducing the huge cost of network upgrade while providing the spectral and energy efficiency needed for the new generation cellular networks. In order to reduce the interference that occur in C-RAN and maximize throughput, this paper proposes a sequentially distributed coalition formation (SDCF) game in which players, in this case the remote radio heads (RRHs), can sequentially join multiple coalitions to maximize their throughput. Contrary to overlapping coalition formation (OCF) game where players contribute fractions of their limited resources to different coalitions, the SDCF game offers better stability by allowing sequential coalition formation depending on the availability of resources and therefore providing a balance between efficient spectrum use and interference management. An algorithm for the proposed model is developed based on the merge-only method. The performance of the proposed algorithm in terms of stability, complexity and convergence to final coalition structure is also investigated. Simulation results show that the proposed SDCF game did not only maximize the throughput in the C-RAN, but it also shows better performances and larger capabilities to manage interference with increasing number of RRHs compared to existing methods.
Go to article

This page uses 'cookies'. Learn more