Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

Wavelet transform becomes a more and more common method of processing 3D signals. It is widely used to analyze data in various branches of science and technology (medicine, seismology, engineering, etc.). In the field of mechanical engineering wavelet transform is usually used to investigate surface micro- and nanotopography. Wavelet transform is commonly regarded as a very good tool to analyze non-stationary signals. However, to analyze periodical signals, most researchers prefer to use well-known methods such as Fourier analysis. In this paper authors make an attempt to prove that wavelet transform can be a useful method to analyze 3D signals that are approximately periodical. As an example of such signal, measurement data of cylindrical workpieces are investigated. The calculations were performed in the MATLAB environment using the Wavelet Toolbox.
Go to article

Abstract

A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f) algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency). The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
Go to article

Abstract

The main objective of this paper is to produce an applications-oriented review covering infrared techniques and devices. At the beginning infrared systems fundamentals are presented with emphasis on thermal emission, scene radiation and contrast, cooling techniques, and optics. Special attention is focused on night vision and thermal imaging concepts. Next section concentrates shortly on selected infrared systems and is arranged in order to increase complexity; from image intensifier systems, thermal imaging systems, to space-based systems. In this section are also described active and passive smart weapon seekers. Finally, other important infrared techniques and devices are shortly described, among them being: non-contact thermometers, radiometers, LIDAR, and infrared gas sensors.
Go to article

Abstract

Analysis of power consumption presents a very important issue for power distribution system operators. Some power system processes such as planning, demand forecasting, development, etc.., require a complete understanding of behaviour of power consumption for observed area, which requires appropriate techniques for analysis of available data. In this paper, two different time-frequency techniques are applied for analysis of hourly values of active and reactive power consumption from one real power distribution transformer substation in urban part of Sarajevo city. Using the continuous wavelet transform (CWT) with wavelet power spectrum and global wavelet spectrum some properties of analysed time series are determined. Then, empirical mode decomposition (EMD) and Hilbert-Huang Transform (HHT) are applied for the analyses of the same time series and the results showed that both applied approaches can provide very useful information about the behaviour of power consumption for observed time interval and different period (frequency) bands. Also it can be noticed that the results obtained by global wavelet spectrum and marginal Hilbert spectrum are very similar, thus confirming that both approaches could be used for identification of main properties of active and reactive power consumption time series.
Go to article

Abstract

Industrial applications require functional surfaces with a strictly defined micro-texture. Therefore engineered surfaces need to undergo a wide range of finishing processes. One of them is the belt grinding process, which changes the surface topography on a range of roughness and micro-roughness scales. The article describes the use of machined surface images in the monitoring process of micro-smoothing. Machined surface images were applied in the estimation of machined surface quality. The images were decomposed using two-dimensional Discrete Wavelet Transform. The approximation component was analyzed and described by the features representing the geometric parameters of image objects. Determined values of image features were used to create the model of the process and estimation of appropriate time of micro-smoothing.
Go to article

Abstract

In order to make the analog fault classification more accurate, we present a method based on the Support Vector Machines Classifier (SVC) with wavelet packet decomposition (WPD) as a preprocessor. In this paper, the conventional one-against-rest SVC is resorted to perform a multi-class classification task because this classifier is simple in terms of training and testing. However, this SVC needs all decision functions to classify the query sample. In our study, this classifier is improved to make the fault classification task more fast and efficient. Also, in order to reduce the size of the feature samples, the wavelet packet analysis is employed. In our investigations, the wavelet analysis can be used as a tool of feature extractor or noise filter and this preprocessor can improve the fault classification resolution of the analog circuits. Moreover, our investigation illustrates that the SVC can be applicable to the domain of analog fault classification and this novel classifier can be viewed as an alternative for the back-propagation (BP) neural network classifier.
Go to article

Abstract

EEG signal-based sleep stage classification facilitates an initial diagnosis of sleep disorders. The aim of this study was to compare the efficiency of three methods for feature extraction: power spectral density (PSD), discrete wavelet transform (DWT) and empirical mode decomposition (EMD) in the automatic classification of sleep stages by an artificial neural network (ANN). 13650 30-second EEG epochs from the PhysioNet database, representing five sleep stages (W, N1-N3 and REM), were transformed into feature vectors using the aforementioned methods and principal component analysis (PCA). Three feed-forward ANNs with the same optimal structure (12 input neurons, 23 + 22 neurons in two hidden layers and 5 output neurons) were trained using three sets of features, obtained with one of the compared methods each. Calculating PSD from EEG epochs in frequency sub-bands corresponding to the brain waves (81.1% accuracy for the testing set, comparing with 74.2% for DWT and 57.6% for EMD) appeared to be the most effective feature extraction method in the analysed problem.
Go to article

This page uses 'cookies'. Learn more