Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Velocity is one of the main navigation parameters of moving objects. However some systems of position estimation using radio wave measurements cannot provide velocity data due to limitation of their performance. In this paper a velocity measurement method for the DS-CDMA radio navigation system is proposed, which does not require full synchronization of reference stations carrier frequencies. The article presents basics of FDOA (frequency difference of arrival) velocity measurements together with application of this method to an experimental radio navigation system called AEGIR and with some suggestions about the possibility to implement such FDOA measurements in other kinds of asynchronous DS-CDMA radio networks. The main part of this paper present results of performance evaluation of the proposed method, based on laboratory measurements
Go to article

Abstract

Conventionally, the filtering technique for attitude estimation is performed using gyros or attitude dynamics models. In order to extend the application range of an attitude filter, this paper proposes a quaternionbased filtering framework for gyroless attitude estimation without an attitude dynamics model. The attitude estimation system is established based on a quaternion kinematic equation and vector observation models. The angular velocity in the system is determined through observation vectors from attitude sensors and the statistical properties of the angular velocity error are analysed. A Kalman filter is applied to estimate the attitude error such that the effect from the angular velocity error is compensated with its statistical properties at each sampling moment. A numerical simulation example is presented to illustrate the performance of the proposed algorithm.
Go to article

Abstract

Precise measurement of rail vehicle velocities is an essential prerequisite for the implementation of modern train control systems and the improvement of transportation capacity and logistics. Novel eddy current sensor systems make it possible to estimate velocity by using cross-correlation techniques, which show a decline in precision in areas of high accelerations. This is due to signal distortions within the correlation interval. We propose to overcome these problems by employing algorithms from the field of dynamic programming. In this paper we evaluate the application of correlation optimized warping, an enhanced version of dynamic time warping algorithms, and compare it with the classical algorithm for estimating rail vehicle velocities in areas of high accelerations and decelerations.
Go to article

This page uses 'cookies'. Learn more