Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The proportional-integral-derivative (PID) controllers have experienced series of structural modifications and improvements. Example of such modifications are set-point weighting and fractional ordering. While the former is to achieve two-degree-of-freedom (2DOF) ability of set-point tracking and disturbance rejection, the latter is to ensure smooth control action. Therefore, this paper reviews various forms of PID controllers and provides a comparative analysis of 2DOF PID and 2DOF fractional order PID (FOPID) controllers. The paper also discusses the conversion of one PID form to another. For the comparative analysis of the various controllers, a class of unstable systems are considered. Simulation result shows that in most cases the conversion from one form to another does not significantly affect the performance of the system. It is also observed that the 2DOF controllers (2DOF PID and 2DOF FOPID) improved significantly the performance of the ordinary PID controllers.
Go to article

Abstract

Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high.
Go to article

Abstract

This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamicswas described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.
Go to article

This page uses 'cookies'. Learn more