Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

In modern microelectronics progress has been made towards low power ultra large-scale integration (ULSI), and nano-structure devices such as single electron transistors and quantum dots. In this technology application of new materials, which includes high-κ dielectrics for the MOSFET transistors, with extraordinary purity and uniformity is required. Failure analysis and reliability investigations of such films very often requires highresolution local measurements of electrical surface parameters. This kind of experiments can be performed using conductive atomic force microscopy, which provides simultaneous measurement of surface topography and current ?owing through the investigated layer. In order to acquire reliable data, there was designed a precise measurement and control system, which included a low-noise current-to-voltage converter of picoampere resolution, a scanning stage with control electronics and a data acquisition system. In the paper we describe the architecture of the designed and applied experimental set-up. We also present results of simultaneous measurements of topography and current on gold and highly oriented pyrolytic graphite (HOPG).
Go to article

Abstract

Methane (CH4) sensitivity of zinc oxide (ZnO) thin film has been studied in the present work. The sensor element comprises of a chemically fabricated ZnO semiconducting layer and a layer of palladium (Pd) as catalyst. The catalyst layer was formed on the surface of semiconducting ZnO following a wet chemical process from palladium chloride (PdCl2) solution. Fundamental features of a sensor element e.g. sensitivity, response time and recovery process has been studied. The effect of operating temperature on performance of the sensor material has been investigated and a choice of optimum temperature was made at around 200oC. The sensor element exhibited reasonable sensitivity of about 86% at this temperature in presence of 1 vol% methane (CH4) in air.
Go to article

Abstract

This work presents a theoretical study for the distribution of nanocomposite structure of plasmonic thin-film solar cells through the absorber layers. It can be reduced the material consumption and the cost of solar cell. Adding nanometallic fillers in the absorber layer has been improved optical, electrical characteristics and efficiency of traditional thin film solar cells (ITO /CdS/PbS/Al and SnO2/CdS/CdTe/Cu) models that using sub micro absorber layer. Also, this paper explains analysis of J-V, P-V and external quantum efficiency characteristics for nanocomposites thin film solar cell performance. Also, this paper presents the effect of increasing the concentration of nanofillers on the absorption, energy band gap and electron-hole generation rate of absorber layers and the effect of volume fraction on the energy conversion efficiency, fill factor, space charge region of the nanocomposites solar cells.
Go to article

Abstract

GZO/IZO semiconductor thin films were prepared on the ITO substrate via sol-gel spin coating method for using in the dyesensitized solar cells (DSSCs). For this purpose, GZO and IZO thin films were optimized by the percentage of doping gallium and indium in zinc oxide and were studied their electrical, optical and structural properties. After that, the layers with the best performance were selected for use in the DSSCs. The concentration of all solutions for spin coating processes was 0.1 M and zinc oxide has been doped with gallium and indium, with different doping percentages (0, 0.5, 1, 2 and 4 volume percentage). So, by studying the properties of the fabricated thin films, it was found the films with 0.5%GZO and 0.5%IZO have the best performance and hence, the optimized dual-layer (0.5% GZO/0.5% IZO (GIZO)) were prepared and studied their electrical and optical properties. The synthesized optimized dual-layer film was successfully used as the working electrode for dye-sensitized solar cells. The sample with 0.5%IZO shows the 9.1 mA/cm2 short-circuit current density, 0.52 V open circuit voltage, 63% fill factor and 2.98% efficiency.
Go to article

Abstract

Many performing artists in the interwar period in Poland assumed stage names, which were considered a tool of promoting one’s image, but also served other functions, such as the concealment of identity. Over two hundred such pseudonyms — together with the respective artists’ birth names — have been collected and analysed in the article. Approximately in the case of half of them was the original given name retained, and only the surname underwent a change. The comparison of the assumed names with the real ones shows that many names were shortened, and/or made to sound foreign or exotic. Minority surnames — Jewish/German, Russian, Ukrainian — were frequently made to sound Polish, while the Polish ones were foreignised (to make them look English, Italian, French) or vaguely exoticised.
Go to article

This page uses 'cookies'. Learn more