Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

The surfacing technologies are used for constitution of protection layer against wear and is destined for obtaining coating with high hardness. Among many weldings methods currently used to obtain the hard surface layer one of the most effective way of hardfacing is using flux cored arc welding. This additional material gives more possibilities to make expected hard surface layer. Chemical composition, property and economic factors obtained in flux cored wire are much richer in comparison to these obtained with other additional materials. This is the reason why flux cored wires give possibilities of application this kind of material for improving surface in different sectors of industry. In the present paper the imperfection in the layers was used for hardfacing process in different situations to show the possible application in the surface layer. The work presents studies of imperfection of the welds, contains the picture of microstructures, macrostructures and shows the results of checking by visual and penetrant testing methods.
Go to article

Abstract

In the summer of 1979, in South Spitsbergen investigations of the extreme temperatures of the ground surface were carried out. The investigations permitted the determination of the magnitude of the extreme temperatures of the ground surface and their relation to the air temperature. The spatial variability of the extreme temperatures of the ground surface was observed.
Go to article

Abstract

The paper presents the analysis of temperature fields, phase transformations, strains and stresses in a cuboidal element made from S235 steel, surfaced with multipass GMA (Gas Metal Arc) method. The temperature field is described assuming a dualdistribution heat source model and summing up the temperature fields induced by the padded weld and by the electric arc. Dependence of stresses on strains is assumed on the basis of tensile curves of particular structures, taking into account the influence of temperature. The calculations were carried out on the example of five welds in the middle of the plate made of S235 steel. The simulation results are illustrated in graphs of thermal cycles, volume shares of structural components and stresses at the selected points of cross-section, and the temperature and strain distributions in the whole cross section.
Go to article

Abstract

This article discusses the influence of Tungsten Inert Gas (TIG) surfacing of duplex cast steel on its hardness and structure. The samples of 24Cr-5Ni-2.5Mo ferritic-austenitic cast steel were subjected to single-overlay processes with the use of solid wire having the chemical composition similar to that of the duplex cast steel. As a result of the surfacing, the welds were obtained that had no welding imperfections with a smooth transition to the base material. In the test without the heat treatment, directly below the fusion line, we observe a ferrite band with a width of approximately 200 m without visible austenite areas. Some of the samples were then solution treated (1060°C). Both variants, without and after solution heat treatment, were subjected to testing. Significant changes in the microstructure of the joint were observed after the heat treatment process (heat affected zone and weld microstructure changes). In both areas, an increase in the austenite volume fraction after solution heat treatment was observed. Changes in the microhardness of the ferrite in the HAZ area directly below the fusion line were also observed.
Go to article

Abstract

Spitsbergen glaciers react rapidly to changes in the polar environment, which is expressed in differences in extent of their fronts and surface geometry. The Scott Glacier, which is situated in the NW part of Wedel Jarlsberg Land, is an example of the glacier that has undergone almost continuous recession since the Little Ice Age, interrupted by surges. The variations in recession are characterised based on multiannual data with particularly consideration of the period 1990–2005 and the season 2005/2006. Acceleration of front recession and lowering the surface was found only within the tongue up to a height of about 220 m a.s.l. Whereas, in the area situated in the zone of rock steps and above in the ablation zone, the change of glacier surface ablation (Dh) has been recorded compared to the mean annual recession for the period 1990–2005. Moreover, for the upper firn field, the positive surface ablation (DhS7 = +0.19 m) was observed. As the result of progressive reduction of the Scott Glacier mass, with the participation of other factors (bedrock relief among others), new surfaces of roche moutonnée are uncovering particularly in the tongue zone.
Go to article

Abstract

Underground mining extraction causes the displacement and changes of stress fields in the surrounding rock mass. The determination of the changes is extremely important when the mining activity takes place in the proximity of post-flotation tailing ponds, which may affect the stability of the tailing dams. The deterministic modeling based on principles of continuum mechanics with the use of numerical methods, e.g. finite element method (FEM) should be used in all problems of predicting rock mass displacements and changes of stress field, particularly in cases of complex geology and complex mining methods. The accuracy of FEM solutions depends mainly on the quality of geomechanical parameters of the geological strata. The parameters, e.g. young modulus of elasticity, may require verification through a comparison with measured surface deformations using geodetic methods. This paper presents application of FEM in predicting effects of underground mining on the surface displacements in the area of the KGHM safety pillar of the tailing pond of the OUOW Żelazny Most. The area has been affected by room and pillar mining with roof bending in the years 2008-2016 and will be further exposed to room-and-pillar extraction with hydraulic filling in the years 2017–2019.
Go to article

Abstract

Knowledge of the temperature distribution in subsurface layers of the ground is important in the design, modelling and exploitation of ground heat exchangers. In this work a mathematical model of heat transfer in the ground is presented. The model is based on the solution of the equation of transient heat transfer in a semi-infinite medium. In the boundary condition on the surface of the ground radiation fluxes (short- and long-wave), convective heat flux and evaporative heat flux are taken into account. Based on the developed model, calculations were carried out to determine the impact of climatic conditions and the physical properties of the ground on the parameters of the Carslaw-Jeager equation. Example results of calculated yearly courses of the daily average temperature of the surface of the ground and the amount of particular heat fluxes on the ground surface are presented. The compatibility of ground temperature measurements at different depths with the results obtained from the Carslaw–Jaeger equation is evaluated. It was found that the temperature distribution in the ground and its variability in time can be calculated with good accuracy.
Go to article

Abstract

Bacteria from the Simkaniaceae family are intracellular parasites belonging to the Chlamydiales order, detected in surface waters, drinking water, chlorine water, and in wastewater. Its main representative, Simkania negevensis, is pathogenic to humans and animals, especially fishes, as it principally causes respiratory tract diseases. Bacteria from this family are also capable of surviving and existing in free-living amoebas, omnipresent in the natural environment, which makes them an additional risk for human and animal health. The aim of the present study was to search for representatives of this family in freshwaters from the Odra River and two municipal lakes (Rusałka and Goplana). Out of 100 water samples analysed, the sequence of bacteria of Simkaniaceae family was found just in 1 percent, because phylogenetic analysis revealed that the obtained OdraWCh30 sequence shows 93% similarity to Simkania negevensis strain Z as well as 87% similarity to Candidatus Syngnamydia salmonis isolate Ho-2008 and Candidatus Syngnamydia salmonis isolate VS10102006 and 84-85% similarity to endosymbiont of Xenoturbella westbladi, Simkaniaceae bacterium clone SM081012-5s and Candidatus Syngnamydia venezia strain Pi3-2. This is the first case of detecting sequence of bacteria of Simkaniaceae family in the aquatic environment in Poland.
Go to article

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.
Go to article

Abstract

The paper presents differences between technical states and technical operation states of haul trucks in the technical operation process. The specification and analysis of operational parameters of technological vehicles used in surface mining is possible only due to more and more frequently used diagnostic – telemetric systems. While a detailed analysis of machines operation data can result in the more effective management of mining plant operations and the mining process itself. The determination of operational state indices and their individual components allows preventive actions to be commenced, resulting in improving the work organization of the entire mine machinery system. Moreover, the future technical state of machines operated in surface mining is strictly related to the current state and also depends on the events that occurred in the extraction system. A set of parameter values of individual state characteristics, which allow the haul trucks technical and operational state to be characterized, is a direct effect of a telemetric – diagnostic system operation.
Go to article

Abstract

The paper presents a new geotechnical solution indicating a possibility of effective building structures protection. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. To minimize the mining damage or to reduce its reach it is reasonable to look for technical solutions, which would enable effective protection of building structures. So far authors concentrated primarily on the development of building structure protection methods to minimize the damage caused by the underground mining. The application of geotechnical methods, which could protect building structures against the mining damage, was not considered so far in scientific papers. It should be noticed that relatively few publications are directly related to those issues and there are no practical examples of effective geotechnical protection. This paper presents a geotechnical solution indicating a possibility of effective protection of building structures. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. The calculations were carried out in the Abaqus software, based on the finite element method.
Go to article

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension #27; and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
Go to article

This page uses 'cookies'. Learn more