Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Combine harvesters are the source a large amount of noise in agriculture. Depending on different working conditions, the noise of such machines can have a significant effect on the hearing condition of drivers. Therefore, it is highly important to study the noise signals caused by these machines and find solutions for reducing the produced noise. The present study was carried out is order to obtain the fractal dimension (FD) of the noise signals in Sampo and John Deere combine harvesters in different operational conditions. The noise signals of the combines were recorded with different engine speeds, operational conditions, gear states, and locations. Four methods of direct estimations of the FD of the waveform in the time domain with three sliding windows with lengths of 50, 100, and 200 ms were employed. The results showed that the Fractal Dimension/Sound Pressure Level [dB] in John Deere and Sampo combines varied in the ranges of 1.44/96.8 to 1.57/103.2 and 1.23/92.3 to 1.51/104.1, respectively. The cabins of Sampo and John Deere combines reduced and enhanced these amounts, respectively. With an increase in the length of the sliding windows and the engine speed of the combines, the amount of FD increased. In other words, the size of the suitable window depends on the extraction method of calculating the FD. The results also showed that the type of the gearbox used in the combines could have a tangible effect on the trend of changes in the FD.
Go to article

Abstract

IIn this short communication, we revise a correlation for the saturated liquid isothermal compressibility based on the data available in DIPPR (Postnikov, 2016) which considers the molecular non-sphericity and addresses a problem of predicting speeds of sound in saturated long-chained alkanes. In addition, we correct a misprint appeared in the cited work and provide programming code used for the realisation of the proposed calculations.
Go to article

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension #27; and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
Go to article

Abstract

The paper analyses a possibility of utilising the information which is contained in DIPPR database for a calculation of the speed of sound, which is absent there. As an example, liquid hydrocarbons are considered: n-hexane, 1-hexene, cyclohexane, cyclohexene, benzene, and 1-hexanols, as well as representatives of n-alkanes with various hydrocarbon chain lengths. It is shown that the Brelvi-O’Connell correlation for the reduced bulk modulus, supplied with the correlations for the internal pressure at the normal boiling temperature, results in the values having accuracy comparable with other DIPPR data for the region below the boiling point bounded by the values of the reduced density around ρr ≈ 3.5. The source of errors originated from the Brelvi-O’Connell correlation for larger reduced densities is discussed.
Go to article

Abstract

The nonlinearity parameter B/A, internal pressure, and acoustic impedance are calculated for a room temperature ionic liquid, i.e. for 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide for temperatures from (288.15 to 318.15) K and pressures up to 100 MPa. The B/A calculations are made by means of a thermodynamic method. The decrease of B/A values with the increasing pressure is observed. At the same time B/A is temperature independent in the range studied. The results are compared with corresponding data for organic molecular liquids. The isotherms of internal pressure cross at pressure in the vicinity of 70 MPa, i.e. in this range the internal pressure is temperature independent.
Go to article

This page uses 'cookies'. Learn more